SSS4.2
Soil biological capacity, greenhouse gases’ emission and carbon stocks of SUITMA and croplands: assessment and best-management practices
Convener: Viacheslav VasenevECSECS | Co-conveners: Apolline AuclercECSECS, Kristina IvashchenkoECSECS, Jean Louis Morel, Luis Parras-Alcántara, Manuel González-Rosado, Beatriz Lozano-García, Manuel Seeger
Displays
| Attendance Tue, 05 May, 10:45–12:30 (CEST)

Anthropogenic impact on ecosystems has a crucial effect on soil properties, functions and ecosystem services including biodiversity and carbon sequestration. Arable soils and soils of urban, industrial, traffic, mining and military areas (SUITMAs) are exposed to anthropogenic disturbance and transformation. Biological capacity, greenhouse gases’ emission and carbon stocks of anthropogenically-transformed soils differ considerably from natural soils but so far remain overlooked. Negative anthropogenic impacts (e.g., soil sealing, construction, and contamination) can alter and deplete soil functions and ecosystem services, whereas best-management practices (e.g., no till, crop rotation, soil engineering) can enhance the value of anthropogenically-transformed soils. Further, the development of diversified cropping systems (rotations, multiple cropping and intercrops for food, feed and industrial products) under low-input practices for conventional and organic systems could increase land productivity and crops quality, and reduce machinery, fertilizers, pesticides, energy and water demands.
The session will focus on biological diversity and capacity, carbon stocks and fluxes of anthropogenically-transformed soils at the local, regional and global scales. It will promote research achievements addressing advanced and integrated methods in monitoring and assessment of plant and microbial diversity, chemical and physical properties, biological capacity and soil health to support best management practices and nature-based solutions. Indicators and parameters of soil-plant interactions, effectiveness of crops and soil management practices will also be discussed during the session. The session format will promote knowledge and information exchange about soil micro- and mesofauna, community succession, and biochemical processes following the development and evolution of SUITMAs and arable soils. A comprehensive analysis and original case studies presenting contribution of soil biota to the ecosystem services provided by agricultural lands and urban green infrastructure, would greatly contribute to this session. Spatial variability and temporal dynamics in properties, functions and ecosystem services of arable soils and SUITMAs in the context of global changes will be discussed regarding the perspectives of sustainable development of urban and rural areas.