SSS4.8

Microbial hotspots in soils such as the rhizosphere, detritusphere, biopores, hyphasphere, aggregate surfaces, charsphere, etc., are characterized by high activity and fast rates of such process as soil organic matter (SOM) turnover, nutrient mobilization, litter decomposition, respiration, organic matter stabilization, greenhouse gas emission, acidification, etc. The turnover intensity of microbial biomass and SOM as well as nutrient cycling in such hotspots is at least one order of magnitude higher than in the bulk soil.
This session invites contributions to: 1) Various aspects of microbial activity, interactions, communities composition and distribution in hotspots; 2) Factors influencing (micro)biological nutrient (re)cycling including biotic and abiotic controls; 3) New developments to assess and simulate the crucial microbial mechanisms that underpin biogeochemical processes in hotspots (e.g. new approaches and imaging methods); and 4) Combination of experimental, theoretical and modelling approaches to predict the fate and functions of microorganisms in hotspots.

Share:
Convener: Bahar S. Razavi | Co-conveners: Yakov Kuzyakov, Joshua Schimel, Bettina Weber
Displays
| Attendance Fri, 08 May, 14:00–15:45 (CEST)

Microbial hotspots in soils such as the rhizosphere, detritusphere, biopores, hyphasphere, aggregate surfaces, charsphere, etc., are characterized by high activity and fast rates of such process as soil organic matter (SOM) turnover, nutrient mobilization, litter decomposition, respiration, organic matter stabilization, greenhouse gas emission, acidification, etc. The turnover intensity of microbial biomass and SOM as well as nutrient cycling in such hotspots is at least one order of magnitude higher than in the bulk soil.
This session invites contributions to: 1) Various aspects of microbial activity, interactions, communities composition and distribution in hotspots; 2) Factors influencing (micro)biological nutrient (re)cycling including biotic and abiotic controls; 3) New developments to assess and simulate the crucial microbial mechanisms that underpin biogeochemical processes in hotspots (e.g. new approaches and imaging methods); and 4) Combination of experimental, theoretical and modelling approaches to predict the fate and functions of microorganisms in hotspots.

Session assets

Download all presentations (32MB)