According to the Global Wildfire Information System, every year approximately 350 million hectares of land are affected by wildfires. This global phenomenon is responsible for substantial environmental, social and economic losses, which together with land abandonment, droughts, absence of appropriate land management and urban development planning, are expected to aggravate land degradation. In addition, wildfires are becoming a persistent threat, since the fire risk is expected to increase in a context of a warmer and drier climate.
This increased land degradation as a consequence of wildfires has also been highlighted in the latest Climate Change and Land, IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. The impacts of wildfires on soils and ecosystems severely affect ecosystem services supply such as raw material and water provisioning, carbon storage, erosion and flood control, and habitat support, which are essential for human life. Therefore, attention of researchers, stakeholders and decision makers worldwide is urgently needed.
The aim of this session is to join researchers that study the effects of wildfires on ecosystems from wildfire prevention to post-fire mitigation. We warmly invite studies that approach:
i. prescribed and/or experimental fires;
ii. fire severity and burn severity;
iii. fire effects on vegetation, soils and water;
iv. post-fire hydrological and erosive response;
v. post-fire management and mitigation;
either by means of laboratory, field experiments, and/or numerical modelling.
Our session aimed at bringing together researchers who study the effects of wildfires on ecosystems from wildfire prevention to post-fire mitigation. Overall, all the objectives of the session were addressed, and the main outcomes from this session agree in the need for a multidisciplinary approach to implement adequate pre-and post-fire management. It should be highlighted that many advances are being made:
• at the level of using remote-sense technologies to address wildfire risk and fuel connectivity within rural-urban interfaces;
• in the development of direct and indirect techniques to determine/estimate impacts of fires in soil properties;
• more than in the past, we can now observe more studies addressing post-fire mitigation treatments;
• the same way, several advances were made in modeling post-fire hydrological response and soil erosion processes.