Geochemical monitoring in volcanic and seismically active regions: new advances
Co-organized by NH2, co-sponsored by EAG
Convener: Antonio Caracausi | Co-conveners: Kyriaki DaskalopoulouECSECS, Emilie Roulleau, Yuji Sano, Sheng Xu, Artur IonescuECSECS, Brendan McCormick KilbrideECSECS
| Attendance Fri, 08 May, 08:30–10:15 (CEST)

Natural fluids mainly escape from the Earth interior in volcanoes and active seismic regions. New attention is recently posed to the quiescent volcanoes since multidisciplinary investigations showed that magma accumulations at depth coupled to high degassing of volatiles still occurs after long time from the last activity highlighting a risk of reactivation after long phases of inactivity. Furthermore, magma accumulations in regions far from volcanism have an active role in seismicity, in fact magma and its volatiles can lubricate faults and generate overpressure in crustal layers.
Fluids have a key role in processes that generate volcanic activity and earthquakes; they transfer messages to the surface about how the natural systems work. The geochemical monitoring allows recognizing these natural processes and their evolution over time. Recently geochemical observations are supported by the advances of technology that also permit to measure at high frequency geochemical parameters in site. Furthermore new experimental works are producing constrains about the origin and migration of fluids and their behavior during rock deformation.
We are approaching an interesting phase where the geochemistry can actively interact in a multidisciplinary context for investigating natural processes. Great interest is towards the use of the new technologies and methods to solve for complex analytical challenges in geochemical investigations and monitoring of volcanoes and seismic regions. Their use coupled to the basic models of rock-fluids interactions and experiments of fluids generation/migration is contributing to improve the understanding of these natural processes, providing fundamental constrains for monitoring.
We welcome abstracts from various backgrounds, including researchers using traditional and non-traditional geochemical tracers, noble gases, stable isotopes and water chemistry. We wish that this session will be of broad interest to researchers studying hydro-geochemistry, isotope geochemistry, volcanic degassing etc. This will lead to a session that reflects a cross-section of researchers who apply these tracers to the monitoring of volcanoes and seismic activity. We hope in this way to highlight the potential scientific advances available through the combination of these complementary areas of study and specific techniques, and to encourage future collaborative efforts to resolve the many outstanding questions in volcanic and seismically active systems.