G4.4

Terrain gravimetry is a powerful geophysical tool that, through sensing changes in subsurface mass, can supply unique information on the dynamics of underground fluids, like water, magma, hydrocarbons, etc. This is critically important for energy industry (not just petroleum and natural gas, but also geothermal), resource management (particularly, with regard to water), and natural hazards (especially volcanoes).
Despite its potential, terrain gravimetry is currently underexploited, owing to the high cost of available instrumentation and the difficulty in using it under harsh environmental conditions and to the major challenge posed by retrieving useful information from gravity changes in noisy environments.
Major technology developments have recently occurred in instrumentation and methodology and are being demonstrated, opening up new perspectives to increase the capability of terrain gravimetry. On one hand, new types of sensors are being developed and ruggedized, expanding the measurement capabilities. On the other hand, methodologies and workflows are developed to exploit more efficiently hybrid networks of sensors. As an example, a recently funded H2020 project, called NEWTON-g, targets the development and field application of a “gravity imager” exploiting MEMS (relative) and quantum (absolute) gravimeters. These advancements will give new impulse to terrain gravimetry, thus helping its transition from a niche field into a cornerstone resource for geophysical monitoring and research. However, for this transition to succeed, technology developments must be complemented by constructive feedback from the gravimetry community
This session aims at bringing together instrument and tool developers and end-users of terrain gravimetry in a variety of fields, including, but not limited to, hydrology, volcanology and petroleum geology. We aim at discussing the state of the art of terrain gravimetry and the added value it provides with respect to other geophysical techniques, as well as the exciting opportunities offered by the new technologies under development.

Share:
Convener: Daniele Carbone | Co-conveners: Hammond Giles, Jean Lautier-Gaud, Eleonora Rivalta, Filippo Greco
Displays
| Attendance Fri, 08 May, 14:00–15:45 (CEST)

Terrain gravimetry is a powerful geophysical tool that, through sensing changes in subsurface mass, can supply unique information on the dynamics of underground fluids, like water, magma, hydrocarbons, etc. This is critically important for energy industry (not just petroleum and natural gas, but also geothermal), resource management (particularly, with regard to water), and natural hazards (especially volcanoes).
Despite its potential, terrain gravimetry is currently underexploited, owing to the high cost of available instrumentation and the difficulty in using it under harsh environmental conditions and to the major challenge posed by retrieving useful information from gravity changes in noisy environments.
Major technology developments have recently occurred in instrumentation and methodology and are being demonstrated, opening up new perspectives to increase the capability of terrain gravimetry. On one hand, new types of sensors are being developed and ruggedized, expanding the measurement capabilities. On the other hand, methodologies and workflows are developed to exploit more efficiently hybrid networks of sensors. As an example, a recently funded H2020 project, called NEWTON-g, targets the development and field application of a “gravity imager” exploiting MEMS (relative) and quantum (absolute) gravimeters. These advancements will give new impulse to terrain gravimetry, thus helping its transition from a niche field into a cornerstone resource for geophysical monitoring and research. However, for this transition to succeed, technology developments must be complemented by constructive feedback from the gravimetry community
This session aims at bringing together instrument and tool developers and end-users of terrain gravimetry in a variety of fields, including, but not limited to, hydrology, volcanology and petroleum geology. We aim at discussing the state of the art of terrain gravimetry and the added value it provides with respect to other geophysical techniques, as well as the exciting opportunities offered by the new technologies under development.

Session assets

Download all presentations (122MB)