G3.4

Low-lying coastal areas can be an early casualty to accelerating rates of sea-level rise, especially if land subsidence enhances such rates. More and more studies indicate that land subsidence due to natural and anthropogenic causes, including excessive groundwater extraction from coastal aquifers, peat oxidation due to surface water drainage through land reclamation, urbanization and agricultural use, as well as sediment starvation due to construction of dams and artificial levees, have caused damages to wetland ecosystems and increased flooding risk. While sea-level rise is a global issue and requires a global collaborative response, natural and anthropogenic coastal subsidence develops mainly at the local to regional scale, and its causes and severity vary substantially from place to place. Therefore, specific communities living on coastal areas can try to offset or reduced land subsidence.

The combination of geological and historical measurements and data from ongoing monitoring techniques is required to understand all drivers of coastal land motion and their contributions to past, present, and future subsidence. Research on coastal subsidence encompasses multidisciplinary expertise, requiring measuring and modeling techniques from geology, geodesy, natural hazards, oceanography, hydrogeology, and geomechanics. In this session, we want to bring together the expertise of all the involved disciplines. We invite contributions on all aspects of coastal subsidence research including recent advances on i) measurement through ground-based and remote sensing techniques, ii) numerical models, iii) their applicability to distinguish between the different drivers contributing to land subsidence, and iv) quantification of coastal hazards associated to relative sea-level rise. In particular, efforts towards characterizing human intervention on coastal land motion are welcome.

Share:
Co-organized by HS13/NH8/OS2
Convener: Makan A. KaregarECSECS | Co-conveners: Simon Engelhart, Thomas FrederikseECSECS, Pietro Teatini, Niamh CahillECSECS
Displays
| Fri, 08 May, 10:45–12:30 (CEST)

Low-lying coastal areas can be an early casualty to accelerating rates of sea-level rise, especially if land subsidence enhances such rates. More and more studies indicate that land subsidence due to natural and anthropogenic causes, including excessive groundwater extraction from coastal aquifers, peat oxidation due to surface water drainage through land reclamation, urbanization and agricultural use, as well as sediment starvation due to construction of dams and artificial levees, have caused damages to wetland ecosystems and increased flooding risk. While sea-level rise is a global issue and requires a global collaborative response, natural and anthropogenic coastal subsidence develops mainly at the local to regional scale, and its causes and severity vary substantially from place to place. Therefore, specific communities living on coastal areas can try to offset or reduced land subsidence.

The combination of geological and historical measurements and data from ongoing monitoring techniques is required to understand all drivers of coastal land motion and their contributions to past, present, and future subsidence. Research on coastal subsidence encompasses multidisciplinary expertise, requiring measuring and modeling techniques from geology, geodesy, natural hazards, oceanography, hydrogeology, and geomechanics. In this session, we want to bring together the expertise of all the involved disciplines. We invite contributions on all aspects of coastal subsidence research including recent advances on i) measurement through ground-based and remote sensing techniques, ii) numerical models, iii) their applicability to distinguish between the different drivers contributing to land subsidence, and iv) quantification of coastal hazards associated to relative sea-level rise. In particular, efforts towards characterizing human intervention on coastal land motion are welcome.

Files for download

Download all presentations (48MB)