SM7.3

Numerical modeling of earthquakes provides new approaches to apprehend the physics of earthquake rupture and the seismic cycle, seismic wave propagation, fault zone evolution and seismic hazard assessment.
Recent advances in numerical algorithms and increasing computational power enable unforeseen precision and multi-physics components in physics-based earthquake simulation but also pose challenges in terms of fully exploiting modern supercomputing infrastructure, realistic parameterization of simulation ingredients and the analysis of large synthetic datasets while advances in laboratory experiments link earthquake source processes to rock mechanics.
This session aims to bring together modelers and data analysts interested in the physics and computational aspects of earthquake phenomena and earthquake engineering. We welcome studies focusing on all aspects of seismic hazard assessment and the physics of earthquakes - from slow slip events, fault mechanics and rupture dynamics, to wave propagation and ground motion analysis, to the seismic cycle and inter seismic deformation - and studies which further the state-of-the art in the related computational and numerical aspects.

Public information:
Welcome to session SM7.3 "Physics-based earthquake modeling and engineering”.
Our session aims to bring together modelers and data analysts interested in the physics and computational aspects of earthquake phenomena and earthquake engineering.
We are looking forward to discussing uploaded displays in display number order as appearing to your right. Presenters please prepare a short introduction, then we will discuss questions. We will end with an open discussion at the end of the session.

We stick with the simple EGU text chat during all the session increasing accessibility. Please take advantage by asking lots of questions, and, importantly, post comments beneath displays!

Share:
Co-organized by NH4
Convener: Alice-Agnes GabrielECSECS | Co-conveners: Jean Paul Ampuero, Hideo Aochi
Displays
| Attendance Mon, 04 May, 10:45–12:30 (CEST)

Numerical modeling of earthquakes provides new approaches to apprehend the physics of earthquake rupture and the seismic cycle, seismic wave propagation, fault zone evolution and seismic hazard assessment.
Recent advances in numerical algorithms and increasing computational power enable unforeseen precision and multi-physics components in physics-based earthquake simulation but also pose challenges in terms of fully exploiting modern supercomputing infrastructure, realistic parameterization of simulation ingredients and the analysis of large synthetic datasets while advances in laboratory experiments link earthquake source processes to rock mechanics.
This session aims to bring together modelers and data analysts interested in the physics and computational aspects of earthquake phenomena and earthquake engineering. We welcome studies focusing on all aspects of seismic hazard assessment and the physics of earthquakes - from slow slip events, fault mechanics and rupture dynamics, to wave propagation and ground motion analysis, to the seismic cycle and inter seismic deformation - and studies which further the state-of-the art in the related computational and numerical aspects.

Public information: Welcome to session SM7.3 "Physics-based earthquake modeling and engineering”.
Our session aims to bring together modelers and data analysts interested in the physics and computational aspects of earthquake phenomena and earthquake engineering.
We are looking forward to discussing uploaded displays in display number order as appearing to your right. Presenters please prepare a short introduction, then we will discuss questions. We will end with an open discussion at the end of the session.

We stick with the simple EGU text chat during all the session increasing accessibility. Please take advantage by asking lots of questions, and, importantly, post comments beneath displays!

Session assets

Download all presentations (103MB)