GI2.5
Data fusion, integration, correlation and advances of non-destructive testing methods and numerical developments for engineering and geosciences applications
Convener: Andrea Benedetto | Co-conveners: Morteza (Amir) Alani, Andreas Loizos, Francesco Soldovieri, Fabio TostiECSECS
Displays
| Attendance Thu, 07 May, 14:00–15:45 (CEST)

Non-destructive testing (NDT) methods have been increasingly employed in a wide range of engineering and geosciences applications and their stand-alone use has been greatly investigated to date. New theoretical developments, technological advances as well as the progress achieved in surveying, data processing and interpretation have in fact led to a tremendous growth of equipment reliability, allowing outstanding data quality and accuracy.

Nevertheless, the requirements of comprehensive site and material investigations may be complex and time-consuming, involving multiple expertise and many pieces of equipment. The challenge is to step forward and provide an effective integration between data outputs with different physical quantities, scale domains and resolutions. In this regard, enormous development opportunities relating to data fusion, integration and correlation between different NDT methods and theories are to be further investigated.

Within this framework, this Session primarily aims at disseminating contributions from state-of-the-art NDT methods and numerical developments, promoting the integration of existing equipment and the development of new algorithms, surveying techniques, methods and prototypes for effective monitoring and diagnostics. NDT techniques of interest are related – but not limited to – the application of acoustic emission (AE) testing, electromagnetic testing (ET), ground penetrating radar (GPR), geoelectric methods (GM), laser testing methods (LM), magnetic flux leakage (MFL), microwave testing, magnetic particle testing (MT), neutron radiographic testing (NR), radiographic testing (RT), thermal/infrared testing (IRT), ultrasonic testing (UT), seismic methods (SM), vibration analysis (VA), visual and optical testing (VT/OT).

The Session will focus on the application of different NDT methods and theories and will be related – but not limited to – the following investigation areas:
- advanced data fusion;
- advanced interpretation methods;
- design and development of new surveying equipment and prototypes;
- assessment and monitoring methods for material and site investigations;
- comprehensive and inclusive information data systems for the investigation of survey sites and materials;
- numerical simulation and modelling of data outputs with different physical quantities, scale domains and resolutions;
- advances in NDT methods, numerical developments and applications (stand-alone use of existing and state-of-the-art NDTs).