HS5.2.1
Advances in Socio-Hydrology
Convener: Britta HöllermannECSECS | Co-conveners: Iolanda BorzìECSECS, Giuliano Di Baldassarre, Murugesu Sivapalan, Ted VeldkampECSECS, Mohammad(Mo) GhoreishiECSECS
Displays
| Attendance Tue, 05 May, 10:45–12:30 (CEST)

The research field of socio-hydrology emerged as an attempt to better understand the dynamic interactions and feedbacks within diverse coupled human-water systems and its implications for the assessment and management of water resources and associated risks. While acknowledging that the human impact on natural processes has reached unprecedented levels, the socio-hydrological perspective provides for a comprehensive understanding of integrated water systems and aims to identify adequate solutions for water supply, management, and adaptation to risk.
Socio-hydrology offers novel entry points for a more fertile engagement between hydrological and social sciences across different scales ranging from the plot level to entire watersheds. Its interdisciplinary nature encompasses (and integrates) various methodological approaches, epistemologies, and disciplines.
We welcome contributions from researchers from social and natural sciences who are keen to look beyond their research perspective and who like to discuss their research findings in a broader context of coupled human water systems, i.e. the subject matter of socio-hydrology. Abstracts are solicited on topics that deal with planetary water boundary concepts, integrated assessment models (IAMs), water history and archaeology, sustainability of engineered river basins, water valuation (both monetary and non-monetary), urbanizing deltas etc. with a focus on understanding feedbacks and the spatial and temporal dynamics between human society (from individuals to global levels) and their environment and/or simulating plausible co-evolutionary dynamics that emerges into the future. Resulting policy insights for a sustainable future are equally welcomed. Coupled systems can be human-flood systems, human-infrastructure systems, human-irrigation systems, human-agricultural systems, human-delta systems etc. Papers should 1) contribute to the understanding of complex human-water relations and their management, 2) discuss the benefits and shortcomings based on empirical, conceptual or model-based research and disciplinary perspective; and 3) shed light on the added value of socio-hydrological modelling for risk-based decision making and adaptation design.
This session is jointly developed with the framework of the Panta Rhei Research Initiative of the International Association of Hydrological Sciences (IAHS) under the working group of “Socio-hydrological modeling and synthesis”.