HS2.1.1
Mountain hydrology under global change: monitoring, modelling and adaptation
Convener: David Haro MonteagudoECSECS | Co-convener: Jose Miguel Sanchez Perez
Displays
| Attendance Mon, 04 May, 16:15–18:00 (CEST)

Despite only representing about 25% of continental land, mountains are an essential part of the global ecosystem and are recognised to be the source of much of the world’s surfaces water supply apart from important sources of other commodities like energy, minerals, forest and agricultural products, and recreation areas. In addition, mountains represent a storehouse for biodiversity and ecosystem services. People residing within mountains or in their foothills represent approximately 26% of the world’s population, and this percentage increases to nearly 40% when considering those who live within watersheds of rivers originated in a mountain range. This makes mountains particularly sensitive to climate variability, but also unique areas for identifying and monitoring the effects of global change thanks to the rapid dynamics of their physical and biological systems.

This session aims to bring together the scientific community doing hydrology research on mountain ranges across the globe to share results and experiences. Therefore, this session invites contributions addressing past, present and future changes in mountain hydrology due to changes in either climate and/or land use, how these changes affect local and downstream territories, and adaptation strategies to ensure the long-term sustainability of mountain ecosystem services, with a special focus on water cycle regulation and water resources generation. Example topics of interest for this session are:

• Sources of information for evaluating past and present conditions (in either surface and/or ground water systems).
• Methods for differentiating climatic and anthropogenic drivers of hydrological change.
• Modelling approaches to assess hydrological change.
• Evolution, forecasting and impacts of extreme events.
• Case studies on adaptation to changing water resources availability.