HS2.2.2
Earth System Models and coupled atmosphere-hydrological simulations: model development, applications and coupled data assimilation
Co-organized by AS2/BG2/NH1/NP5/OS4
Convener: Harald Kunstmann | Co-conveners: Harrie-Jan Hendricks Franssen, Alfonso Senatore, Gabriëlle De Lannoy, Martin Drews, Lars Nerger, Stefan Kollet, Insa Neuweiler
Displays
| Attendance Tue, 05 May, 10:45–12:30 (CEST)

Earth Systems Models aim at describing the full water- and energy cycles, i.e. from the deep ocean or groundwater across the sea or land surface to the top of the atmosphere. The objective of the session is to create a valuable opportunity for interdisciplinary exchange of ideas and experiences among members of the Earth System modeling community and especially atmospheric-hydrological modelers.
Contributions are invited dealing with approaches how to capture the complex fluxes and interactions between surface water, groundwater, land surface processes, oceans and regional climate. This includes the development and application of one-way or fully-coupled hydrometeorological prediction systems for e.g. floods, droughts and water resources at various scales. We are interested in model systems that make use of innovative upscaling and downscaling schemes for predictions across various spatial- and temporal scales. Contributions on novel one-way and fully-coupled modeling systems and combined dynamical-statistical approaches are encouraged. A particular focus of the session is on weakly and strongly coupled data assimilation across the different compartments of the Earth system for the improved prediction of states and fluxes of water and energy. Merging of different observation types and observations at different length scales is addressed as well as different data assimilation approaches for the atmosphere-land system, the land surface-subsurface system and the atmosphere-ocean system. The value of different measurement types for the predictions of states and fluxes, and the additional value of measurements to update states across compartments is of high interest to the session. We also encourage contributions on use of field experiments and testbeds equipped with complex sensors and measurement systems allowing compartment-crossing and multi-variable validation of Earth System Models.