HS6.6
Remote Sensing for Flood Dynamics Monitoring and Flood Mapping
Co-organized by NH6
Convener: Guy J.-P. Schumann | Co-conveners: Alessio Domeneghetti, Nick Everard, Ben Jarihani, Angelica Tarpanelli
Displays
| Attendance Tue, 05 May, 10:45–12:30 (CEST)

The socio-economic impacts associated with floods are increasing. According to the International Disaster Database (EM-DAT), floods represent the most frequent and most impacting, in terms of the number of people affected, among the weather-related disasters: nearly 0.8 billion people were affected by inundations in the last decade (2006–2015), while the overall economic damage is estimated to be more than $300 billion. Despite this evidence, and the awareness of the environmental role of rivers and their inundation, our knowledge and accurate prediction of flood dynamics remain poor, mainly related to the lack of measurements and ancillary data at the global level.

In this context, remote sensing represents a value source of data and observations that may alleviate the decline in field surveys and gauging stations, especially in remote areas and developing countries. The implementation of remotely-sensed variables (such as digital elevation model, river width, flood extent, water level, land cover, etc.) in hydraulic modelling promises to considerably improve our process understanding and prediction. During the last decades, an increasing amount of research has been undertaken to better exploit the potential of current and future satellite observations, from both government-funded and commercial missions. In particular, in recent years, the scientific community has shown how remotely sensed variables have the potential to play a key role in the calibration and validation of hydraulic models, as well as provide a breakthrough in real-time flood monitoring applications. With the proliferation of open data and more Earth observation data than ever before, this progress is expected to increase.

We encourage presentations related to flood monitoring and mapping through remotely sensed data including: - Remote sensing data for flood hazard and risk mapping, including commercial satellite missions;

- Remote sensing techniques to monitor flood dynamics;
- The use of remotely sensed data for the calibration, or validation, of hydrological or hydraulic models;
- Data assimilation of remotely sensed data into hydrological and hydraulic models;
- Improvement of river discretization and monitoring based on Earth observations;
- River flow estimation from remote sensing;
- River and flood dynamics estimation from satellite (especially time lag, flow velocity, etc.)