Convener: Chiara Corbari | Co-conveners: kamal LABBASSI, Kaniska Mallick, Francesco Vuolo
| Attendance Thu, 07 May, 14:00–15:45 (CEST)

Agriculture is the largest consumer of water worldwide and at the same time irrigation is one of the sectors where there is one of the hugest differences between modern technology and the largely diffused ancient traditional practices. Improving water use efficiency in agriculture is an immediate requirement of human society for sustaining the global food security, to preserve quality and quantity of water resources and to reduce causes of poverties, migrations and conflicts among states, which depend on trans-boundary river basins. Climate changes and increasing human pressure together with traditional wasteful irrigation practices are enhancing the conflictual problems in water use also in countries traditionally rich in water. Saving irrigation water improving irrigation efficiency on large areas with modern technics is one of the first urgent action to do. It is well known in fact that agriculture uses large volumes of water with low irrigation efficiency, accounting in Europe for around 24% of the total water use, with peak of 80% in the Southern Mediterranean part and may reach the same percentage in Mediterranean non-EU countries (EEA, 2009; Zucaro 2014). North Africa region has the lowest per-capita freshwater resource availability among all Regions of the world (FAO, 2018).
Several recent researches are done on the optimization of irrigation water management to achieve precision farming using remote sensing information and ground data combined with water balance modelling.
In this session, we will focus on: the use of remote sensing data to estimate irrigation volumes and timing; management of irrigation using hydrological modeling combined with satellite data; improving irrigation water use efficiency based on remote sensing vegetation indices, hydrological modeling, satellite soil moisture or land surface temperature data; precision farming with high resolution satellite data or drones; farm and irrigation district irrigation management; improving the performance of irrigation schemes; irrigation water needs estimates from ground and satellite data; ICT tools for real-time irrigation management with remote sensing and ground data coupled with hydrological modelling.