HS8.2.5
Innovative methods for the quantification of subsurface processes
Convener: Maria KlepikovaECSECS | Co-conveners: Clement Roques, Pietro De Anna, Bernard Brixel, Giulia Ceriotti
Displays
| Attendance Fri, 08 May, 10:45–12:30 (CEST)

A number of physical (e.g. flow and transport), chemical (e.g. red-ox reactions) and biological (e.g. bio-mineralization) mechanisms critically control the fate of the underground environment where rocks, liquids, gases and microbes sit in close proximity and interaction. The common feature of these processes is their heterogeneity (spatial variability) and the different scale at which they impact the natural environment. A wide range of innovative methods have recently emerged, from laboratory experiment to field tests, that are capable of quantifying the extent and the interaction between physical, chemical and biological properties of complex structures at different scales, including: (hydro)geophysical methods, innovative sensors or microscopic imaging techniques.

The objective of this session is to discuss significant improvement in our understanding of subsurface processes based on innovative methods allowing the quantification of relevant phenomena and their underling mechanisms such as flow, transport, chemically driven or biologically mediated processes in heterogeneous porous and fractured media. Contributions may include, for example, imaging, advanced in-situ single- and/or cross-borehole hydraulic tests, hydrogeophysical techniques, strategies for borehole/borehole interval sealing or inverse model techniques. We particularly encourage integrative interdisciplinary methods, i.e. hydraulic, chemical or heat methods that elucidate the role played by the flow heterogeneity on transport and related processes. Ideas for future strategies related to experimental methods and interpretation of existing data are welcomed.