ITS2.13/AS4.29

Volcanic emission can have a strong impact on the Earth’s radiation budget and climate over a range of temporal and spatial scales, depending on the activity type (passive degassing and small magnitude to strong explosive eruptions).
It is now well known that strong explosive volcanic eruptions are a major natural driver of climate variability at interannual to multidecadal time scales. Assessment of volcanically-forced climate variability is complicated by many limiting factors, including the paucity of observed eruptions, uncertainties in volcanic forcing datasets for the current and pre-instrumental periods, limitations of proxy-based climate evidence, uncertainties of global aerosol model simulations and the apparent large inconsistencies in the responses to volcanic forcing simulated by current climate models. Quiescent passive degassing and smaller-magnitude eruptions on the other hand can impact on regional climate system. In addition, volcanic emissions may influence local-to-regional air quality, seriously affect the biosphere and environment, and the release of gas from soil may pose long-term health hazards. This session focuses on new results from integrative research on the climatic, environmental and societal impacts of the volcanic activity, including eruptions of Pinatubo-magnitude and larger, volcanic degassing and small eruptions.

We aim to highlight contributions conducted under the umbrella of the CMIP6 and in particular VolMIP activity that explore the responses of the coupled ocean-atmosphere system to volcanic forcing, from the characterization of the mechanism of volcanically-forced climate variability and on the potential role of volcanic eruptions on future climate variability and predictability by means of observations, climate reconstruction studies and modeling approaches. We also welcome contributions conducted under PAGES-VICS activities from research aimed at better understanding volcanic impacts on historical and modern societies. We also invite contribution to the current international SPARC-SSiRC program, observational and modelling studies of the 2019 Raikoke aerosol cloud and from recent field campaigns. We further invite new results from H2020 transnational accesses to volcanic platforms and cross-studies coupling volcanology/atmospheric/health hazards, aspects of volcanic plumes science, their observation, modelling and impacts.

Share:
Co-organized by CL4/GMPV10
Convener: Myriam Khodri | Co-conveners: Pasquale Sellitto, Graham Mann, Emily Mason, Giuseppe G. Salerno, Claudia Timmreck, Matthew Toohey, Davide Zanchettin
Displays
| Wed, 06 May, 08:30–12:30 (CEST)

Volcanic emission can have a strong impact on the Earth’s radiation budget and climate over a range of temporal and spatial scales, depending on the activity type (passive degassing and small magnitude to strong explosive eruptions).
It is now well known that strong explosive volcanic eruptions are a major natural driver of climate variability at interannual to multidecadal time scales. Assessment of volcanically-forced climate variability is complicated by many limiting factors, including the paucity of observed eruptions, uncertainties in volcanic forcing datasets for the current and pre-instrumental periods, limitations of proxy-based climate evidence, uncertainties of global aerosol model simulations and the apparent large inconsistencies in the responses to volcanic forcing simulated by current climate models. Quiescent passive degassing and smaller-magnitude eruptions on the other hand can impact on regional climate system. In addition, volcanic emissions may influence local-to-regional air quality, seriously affect the biosphere and environment, and the release of gas from soil may pose long-term health hazards. This session focuses on new results from integrative research on the climatic, environmental and societal impacts of the volcanic activity, including eruptions of Pinatubo-magnitude and larger, volcanic degassing and small eruptions.

We aim to highlight contributions conducted under the umbrella of the CMIP6 and in particular VolMIP activity that explore the responses of the coupled ocean-atmosphere system to volcanic forcing, from the characterization of the mechanism of volcanically-forced climate variability and on the potential role of volcanic eruptions on future climate variability and predictability by means of observations, climate reconstruction studies and modeling approaches. We also welcome contributions conducted under PAGES-VICS activities from research aimed at better understanding volcanic impacts on historical and modern societies. We also invite contribution to the current international SPARC-SSiRC program, observational and modelling studies of the 2019 Raikoke aerosol cloud and from recent field campaigns. We further invite new results from H2020 transnational accesses to volcanic platforms and cross-studies coupling volcanology/atmospheric/health hazards, aspects of volcanic plumes science, their observation, modelling and impacts.

Files for download

Session materials Download all presentations (189MB)