ITS3.1/NP1.2

Several subsystems of the Earth system have been suggested to react abruptly at critical levels of anthropogenic forcing. Well-known examples of such Tipping Elements include the Atlantic Meridional Overturning Circulation, the polar ice sheets and sea ice, tropical and boreal forests, as well as the Asian monsoon systems. Interactions between the different Tipping Elements may either have stabilizing or destabilizing effects on the other subsystems, potentially leading to cascades of abrupt transitions. The critical forcing levels at which abrupt transitions occur have recently been associated with Tipping Points.

It is paramount to determine the critical forcing levels (and the associated uncertainties) beyond which the systems in question will abruptly change their state, with potentially devastating climatic, ecological, and societal impacts. For this purpose, we need to substantially enhance our understanding of the dynamics of the Tipping Elements and their interactions, on the basis of paleoclimatic evidence, present-day observations, and models spanning the entire hierarchy of complexity. Moreover, to be able to mitigate - or prepare for - potential future transitions, early warning signals have to be identified and monitored in both observations and models.

This interdisciplinary session invites contributions that address Tipping Points in the Earth system from the different perspectives of all relevant disciplines, including

- the mathematical theory of abrupt transitions in (random) dynamical systems,
- paleoclimatic studies of past abrupt transitions,
- data-driven and process-based modelling of past and future transitions,
- early-warning signals
- the implications of abrupt transitions for Climate sensitivity and response,
- ecological and societal impacts, as well as
- decision theory in the presence of uncertain Tipping Point estimates

Confirmed invited speaker: Michael Ghil

Share:
Co-organized by CL4/CR7/OS1
Convener: Niklas BoersECSECS | Co-conveners: Peter Ditlevsen, Timothy Lenton , Anna von der Heydt, Ricarda Winkelmann
Displays
| Wed, 06 May, 08:30–12:30 (CEST)

Several subsystems of the Earth system have been suggested to react abruptly at critical levels of anthropogenic forcing. Well-known examples of such Tipping Elements include the Atlantic Meridional Overturning Circulation, the polar ice sheets and sea ice, tropical and boreal forests, as well as the Asian monsoon systems. Interactions between the different Tipping Elements may either have stabilizing or destabilizing effects on the other subsystems, potentially leading to cascades of abrupt transitions. The critical forcing levels at which abrupt transitions occur have recently been associated with Tipping Points.

It is paramount to determine the critical forcing levels (and the associated uncertainties) beyond which the systems in question will abruptly change their state, with potentially devastating climatic, ecological, and societal impacts. For this purpose, we need to substantially enhance our understanding of the dynamics of the Tipping Elements and their interactions, on the basis of paleoclimatic evidence, present-day observations, and models spanning the entire hierarchy of complexity. Moreover, to be able to mitigate - or prepare for - potential future transitions, early warning signals have to be identified and monitored in both observations and models.

This interdisciplinary session invites contributions that address Tipping Points in the Earth system from the different perspectives of all relevant disciplines, including

- the mathematical theory of abrupt transitions in (random) dynamical systems,
- paleoclimatic studies of past abrupt transitions,
- data-driven and process-based modelling of past and future transitions,
- early-warning signals
- the implications of abrupt transitions for Climate sensitivity and response,
- ecological and societal impacts, as well as
- decision theory in the presence of uncertain Tipping Point estimates

Confirmed invited speaker: Michael Ghil

Files for download

Download all presentations (124MB)