SM1.3

Ambient seismic noise-based monitoring and imaging techniques have matured into a core part of the seismological toolkit. The advantages are based on the commonly obtained robust reconstruction of empirical Green’s function estimates that allows seismic imaging and continuous monitoring of a wide range of subsurface structures.

In this session, we focus on open questions and methodological advances in seismic interferometry and ambient noise based seismology. We invite (A) contributions on new methodological approaches in seismic interferometry and noise processing, (B) studies of time variations of elastic material properties, and (C) investigations of the sources of the ambient seismic noise.

This could, for example, include contributions that...
... further extend the resolution capabilities and sensitivities of methods using the continuously recorded wavefield and its applications;
... propose ideas that aim to push the imaging resolution of multiple scattered wavefields;
... report on case studies of established techniques that are applied to data collected by unconventional solid earth and acoustic acquisition systems such as distributed acoustic sensing cables, rotation sensors, or infrasound installations;
... investigate causes of temporal variations of medium properties, including suggestions for the upscaling of laboratory configurations to local and regional scales;
... show monitoring applications that connect the obtained velocity change signals with complementary observables such as seismicity rates, geodetic signals, or meltwater drainage to better constrain underlying physical processes and model parameters;
... study the excitation of the ambient field over the entire frequency range and implications for the stability of the reconstructed signals;

Solicited presentation by Dr. Eileen Martin (Virginia Tech, USA) on ambient noise interferometry with fiber optic distributed acoustic sensing (DAS).

Share:
Co-organized by NH4
Convener: Céline Hadziioannou | Co-conveners: Laura ErmertECSECS, Gregor Hillers, Anne Obermann, Christoph Sens-Schönfelder
Displays
| Attendance Tue, 05 May, 14:00–18:00 (CEST)

Ambient seismic noise-based monitoring and imaging techniques have matured into a core part of the seismological toolkit. The advantages are based on the commonly obtained robust reconstruction of empirical Green’s function estimates that allows seismic imaging and continuous monitoring of a wide range of subsurface structures.

In this session, we focus on open questions and methodological advances in seismic interferometry and ambient noise based seismology. We invite (A) contributions on new methodological approaches in seismic interferometry and noise processing, (B) studies of time variations of elastic material properties, and (C) investigations of the sources of the ambient seismic noise.

This could, for example, include contributions that...
... further extend the resolution capabilities and sensitivities of methods using the continuously recorded wavefield and its applications;
... propose ideas that aim to push the imaging resolution of multiple scattered wavefields;
... report on case studies of established techniques that are applied to data collected by unconventional solid earth and acoustic acquisition systems such as distributed acoustic sensing cables, rotation sensors, or infrasound installations;
... investigate causes of temporal variations of medium properties, including suggestions for the upscaling of laboratory configurations to local and regional scales;
... show monitoring applications that connect the obtained velocity change signals with complementary observables such as seismicity rates, geodetic signals, or meltwater drainage to better constrain underlying physical processes and model parameters;
... study the excitation of the ambient field over the entire frequency range and implications for the stability of the reconstructed signals;

Solicited presentation by Dr. Eileen Martin (Virginia Tech, USA) on ambient noise interferometry with fiber optic distributed acoustic sensing (DAS).

Session assets

Session materials Download all presentations (144MB)