Ice shelves and tidewater glaciers are sensitive elements of the climate system. Sandwiched between atmosphere and ocean, they are vulnerable to changes in either. The recent disintegration of ice shelves such as Larsen B and Wilkins on the Antarctic Peninsula, current thinning of the ice shelves in the Amundsen Sea sector of West Antarctica, and the recent accelerations of many of Greenland's tidewater glaciers provide evidence of the rapidity with which those systems can respond. Changes in marine-terminating outlets appear to be intimately linked with acceleration and thinning of the ice sheets inland of the grounding line, with immediate consequences for global sea level. Studies of the dynamics and structure of the ice sheets' marine termini and their interactions with atmosphere and ocean are the key to improving our understanding of their response to climate forcing and of their buttressing role for ice streams. The main themes of this session are the dynamics of ice shelves and tidewater glaciers and their interaction with the ocean, atmosphere and the inland ice, including grounding line dynamics. The session includes studies on related processes such as calving, ice fracture, rifting and mass balance, as well as theoretical descriptions of mechanical and thermodynamic processes. We seek contributions both from numerical modelling of ice shelves and tidewater glaciers, including their oceanic and atmospheric environments, and from observational studies of those systems, including glaciological and oceanographic field measurements, as well as remote sensing and laboratory studies.
CR5.7
Ice shelves and tidewater glaciers - dynamics, interactions, observations, modelling
Co-organized by OS1
Convener:
Adrian Jenkins
|
Co-conveners:
Rachel Carr,
Angelika Humbert,
Nicolas Jourdain,
Inga Monika Koszalka
Displays
|
Attendance
Fri, 08 May, 14:00–15:45 (CEST),
Attendance
Fri, 08 May, 16:15–18:00 (CEST)