OS3.1 | PICO

Ocean oxygen loss is one of the key consequences of climate change and has the potential to critically impact marine biogeochemical cycles and ecology. Current time series projections and climate models identify an unusually rapid decline in oxygen concentrations, particularly in tropical regions. However, our understanding of how stable this trend is over longer time scales, how adaptable ecosystems are, and if negative or positive feedback mechanisms exist is insufficient.

We seek to identify major gaps in knowledge helping to quantify the rate of ocean deoxygenation and its impact on both biogeochemistry and marine life. To do so, this session aims to bring together scientists from across disciplines including physical oceanography, climate modeling, biogeochemistry, and deep time experts. Our aim is not only to bring our results together but to conclude on what changes in ocean oxygen content can be identified across different ocean areas and different geological timescales.

We invite contributions that investigate ocean deoxygenation in the past, present and future ocean, and its physical, chemical and/or biological drivers, using observational or model-based approaches at regional or global scales.

Share:
Co-organized by BG4
Convener: Bastien QuesteECSECS | Co-convener: Carolin LöscherECSECS
Ocean oxygen loss is one of the key consequences of climate change and has the potential to critically impact marine biogeochemical cycles and ecology. Current time series projections and climate models identify an unusually rapid decline in oxygen concentrations, particularly in tropical regions. However, our understanding of how stable this trend is over longer time scales, how adaptable ecosystems are, and if negative or positive feedback mechanisms exist is insufficient.

We seek to identify major gaps in knowledge helping to quantify the rate of ocean deoxygenation and its impact on both biogeochemistry and marine life. To do so, this session aims to bring together scientists from across disciplines including physical oceanography, climate modeling, biogeochemistry, and deep time experts. Our aim is not only to bring our results together but to conclude on what changes in ocean oxygen content can be identified across different ocean areas and different geological timescales.

We invite contributions that investigate ocean deoxygenation in the past, present and future ocean, and its physical, chemical and/or biological drivers, using observational or model-based approaches at regional or global scales.