OS2.2

Oceanographic processes at coastal scales present a number of differences with respect to deep water oceanography, which result in higher prediction errors. In shallow water coastal domains the bottom topography exerts a strong control on the resulting wave/current fields and other factors need to be accounted for (stratification and mixing effects, land boundary condition). Moreover, the coupling between wind, waves, currents and sediments at limited scales, or even the choice of numerical strategy (nested meshes, finite-elements, etc.) may also play a critical role in the quality of the predictions. Coastal observations are therefore necessary to drive numerical models, combining in-situ data and satellite images. The advent of new satellite capabilities (resolution and sensors like for instance those of the Sentinel constellation) and new modelling advances (coupling and boundary conditions) with coastal observatories should allow starting a quantum leap in coastal oceanography.

These issues are even more relevant in a framework of changing climate, since coastal and transitional areas are strongly impacted by climate. Because of these reasons, it is timely to discuss recent advances in fields such as: integrated ocean-atmosphere-sediment modelling approaches and the physics of their coupling mechanisms; the hydrological, biogeochemical, geomorphological variability of coastal regions; the availability and use of coastal in-situ observations; and standards, procedures and data formats to make data ready for use in an integrated coastal ocean monitoring system. Following this, some of the themes we invite for this session are satellite/in-situ measurements, coastal assimilation, atmosphere-ocean-sediment model coupling and error/prediction limits as well as the contribution of coastal ocean science to operational oceanography. Finally, how these main processes control coastal variability (hydrodynamics, morphodynamics and bio-geochemical processes) and applications to improve our knowledge on how these processes interact with coastal infrastructure or activities.

Share:
Convener: Agustín Sánchez-Arcilla | Co-conveners: Davide Bonaldo, Sandro Carniel, Manuel Espino Infantes, Emil Stanev
Displays
| Tue, 05 May, 08:30–10:15 (CEST)

Oceanographic processes at coastal scales present a number of differences with respect to deep water oceanography, which result in higher prediction errors. In shallow water coastal domains the bottom topography exerts a strong control on the resulting wave/current fields and other factors need to be accounted for (stratification and mixing effects, land boundary condition). Moreover, the coupling between wind, waves, currents and sediments at limited scales, or even the choice of numerical strategy (nested meshes, finite-elements, etc.) may also play a critical role in the quality of the predictions. Coastal observations are therefore necessary to drive numerical models, combining in-situ data and satellite images. The advent of new satellite capabilities (resolution and sensors like for instance those of the Sentinel constellation) and new modelling advances (coupling and boundary conditions) with coastal observatories should allow starting a quantum leap in coastal oceanography.

These issues are even more relevant in a framework of changing climate, since coastal and transitional areas are strongly impacted by climate. Because of these reasons, it is timely to discuss recent advances in fields such as: integrated ocean-atmosphere-sediment modelling approaches and the physics of their coupling mechanisms; the hydrological, biogeochemical, geomorphological variability of coastal regions; the availability and use of coastal in-situ observations; and standards, procedures and data formats to make data ready for use in an integrated coastal ocean monitoring system. Following this, some of the themes we invite for this session are satellite/in-situ measurements, coastal assimilation, atmosphere-ocean-sediment model coupling and error/prediction limits as well as the contribution of coastal ocean science to operational oceanography. Finally, how these main processes control coastal variability (hydrodynamics, morphodynamics and bio-geochemical processes) and applications to improve our knowledge on how these processes interact with coastal infrastructure or activities.

Files for download

Download all presentations (84MB)