TS5.5

The broad scale tectonics of the Eastern Mediterranean are dominated by the interaction of the Nubian and Arabian plates with the Eurasian plate. This complex tectonic frame exhibit almost all type of plate boundary conditions such as continental convergence and extension, oceanic subduction, and continental transform. The evolution and present deformation are constrained by diverse geological, geophysical, and geodetic observations and have been explained by different hypotheses, such as (a) tectonic escape system caused by the post-collisional convergence of Eurasian and Arabian plates creating forces at its boundaries with gravitational potential differences of the Anatolian high plateau (b) asthenospheric flow dragging the circular flow of lithosphere from the Levant to Anatolia in the east and the Aegean in the west, (c) slab pull of the Hellenic subduction, (d) mantle upwelling underneath Afar and with the large-scale flow associated with a whole mantle, Tethyan convection cell, (e) or combinations of these mechanisms for the Eastern Mediterranean. Naturally, this tectonic setting generates frequent earthquakes with large magnitudes (M > 7), forming a natural laboratory on understanding the crustal deformation, and crust-mantle interactions for various disciplines of active tectonics.
Multi-disciplinary studies, especially within the last three decades, have made significant contributions to our understanding of the processes on the crustal deformation, and interaction of the mantle with the crustal processes of this region. With this session, we aim to bring together the recent findings of these studies, thus we welcome/invite contributions from a wide range of disciplines including, but not limited to, neotectonics, seismology, tectonic geodesy (e.g. GNSS, InSAR), paleoseismology, tectonic geomorphology, remote sensing, structural geology and geodynamic modelling, which geographically cover the Eastern Mediterranean region, including Anatolia-Aegean Block, Caucasus, Iran, Middle East and Greece.

Invited talks:
- Jonathan Weiss - Measuring Anatolian plate velocity and strain with InSAR: Implications for fault-locking, seismic hazard, and crustal dynamics.
- Pierre Henry - Contrasting seismogenic behaviors on the North Anatolian Fault in the Sea of Marmara

Share:
Co-organized by GD7/NH4/SM2
Convener: Cengiz Zabcı | Co-conveners: Michael Floyd, A. Ozgun Konca, Onno Oncken, Philippe Vernant
Displays
| Attendance Thu, 07 May, 14:00–18:00 (CEST)

The broad scale tectonics of the Eastern Mediterranean are dominated by the interaction of the Nubian and Arabian plates with the Eurasian plate. This complex tectonic frame exhibit almost all type of plate boundary conditions such as continental convergence and extension, oceanic subduction, and continental transform. The evolution and present deformation are constrained by diverse geological, geophysical, and geodetic observations and have been explained by different hypotheses, such as (a) tectonic escape system caused by the post-collisional convergence of Eurasian and Arabian plates creating forces at its boundaries with gravitational potential differences of the Anatolian high plateau (b) asthenospheric flow dragging the circular flow of lithosphere from the Levant to Anatolia in the east and the Aegean in the west, (c) slab pull of the Hellenic subduction, (d) mantle upwelling underneath Afar and with the large-scale flow associated with a whole mantle, Tethyan convection cell, (e) or combinations of these mechanisms for the Eastern Mediterranean. Naturally, this tectonic setting generates frequent earthquakes with large magnitudes (M > 7), forming a natural laboratory on understanding the crustal deformation, and crust-mantle interactions for various disciplines of active tectonics.
Multi-disciplinary studies, especially within the last three decades, have made significant contributions to our understanding of the processes on the crustal deformation, and interaction of the mantle with the crustal processes of this region. With this session, we aim to bring together the recent findings of these studies, thus we welcome/invite contributions from a wide range of disciplines including, but not limited to, neotectonics, seismology, tectonic geodesy (e.g. GNSS, InSAR), paleoseismology, tectonic geomorphology, remote sensing, structural geology and geodynamic modelling, which geographically cover the Eastern Mediterranean region, including Anatolia-Aegean Block, Caucasus, Iran, Middle East and Greece.

Invited talks:
- Jonathan Weiss - Measuring Anatolian plate velocity and strain with InSAR: Implications for fault-locking, seismic hazard, and crustal dynamics.
- Pierre Henry - Contrasting seismogenic behaviors on the North Anatolian Fault in the Sea of Marmara

Session assets

Session summary Download all presentations (255MB)