AS1.33

The southeast Atlantic off the African south western coast is the location for interactions between aerosols, clouds, and radiation ultimately affecting climate. A wide-spread stratocumulus cloud deck is a permanent feature in this region shaping the regional radiation budget, the local water budget through the formation of coastal fog, and potentially the global climate. Aerosols from multiple sources, including biomass and fuel burning, mineral dust, and marine, emitted or transported below or above the cloud deck, can significantly change the microphysical and radiative properties of the clouds. Currently these processes are poorly understood, which is reflected in the diversity of model simulation results of radiative forcing. Studies that present new observations and modelling of the aforementioned properties, interactions and implications over the southeast Atlantic and adjacent continental regions are solicited

Share:
Convener: Paola Formenti | Co-conveners: Hendrik AndersenECSECS, Marco GaetaniECSECS, Jens Redemann
Displays
| Attendance Mon, 04 May, 10:45–12:30 (CEST)

The southeast Atlantic off the African south western coast is the location for interactions between aerosols, clouds, and radiation ultimately affecting climate. A wide-spread stratocumulus cloud deck is a permanent feature in this region shaping the regional radiation budget, the local water budget through the formation of coastal fog, and potentially the global climate. Aerosols from multiple sources, including biomass and fuel burning, mineral dust, and marine, emitted or transported below or above the cloud deck, can significantly change the microphysical and radiative properties of the clouds. Currently these processes are poorly understood, which is reflected in the diversity of model simulation results of radiative forcing. Studies that present new observations and modelling of the aforementioned properties, interactions and implications over the southeast Atlantic and adjacent continental regions are solicited

Session assets

Download all presentations (13MB)