CL4.16

The North Pacific’s sensitivity to forcing and feedbacks to background climate are an important, but largely open question in assessments of global climate, both in the modern and geological past. Enhanced knowledge of processes of past climate change is crucial to separate between natural and anthropogenic forcing, and to enhance the reliability of future climate projections. On a spatial scale, this region also comprises major oceanographic patterns including Boundary Current systems e.g., Kuroshio/Oyashio, or the Alaskan Stream and several frontal regions. In addition, complex exchange processes and interactions between the open North Pacific and its marginal seas from low to high latitudes create a spatially heterogenous region, with small-scale mixing and both temporal and spatial variations in the system at atmospheric, and oceanic surface, subsurface and deep levels.
We aim to provide a comprehensive collection of original contributions and syntheses that foster the dynamic and four-dimensional understanding of the evolution of climate and oceanic modes in the North Pacific, including links and teleconnections to low latitudes (e.g. West Pacific Warm Pool) and polar regions, as well as to global ocean circulation and climate patterns.
We welcome contributions across all time scales, from the geological past to present. Results may be based on instrumental or proxy data, as well as climate modelling. The session should advance our process-oriented understanding of the complex role of the North Pacific and its marginals seas in regulating biogeochemical cycles, ocean overturning circulation, and ocean-atmosphere carbon budgets. These past climate scenarios can be used to create a framework for the identification of potential thresholds in the current, warming Earth system.

Share:
Co-organized by OS1
Convener: Xun GongECSECS | Co-conveners: Lester Lembke-JeneECSECS, Gerrit Lohmann, Xuefa Shi
Displays
| Wed, 06 May, 16:15–18:00 (CEST)

The North Pacific’s sensitivity to forcing and feedbacks to background climate are an important, but largely open question in assessments of global climate, both in the modern and geological past. Enhanced knowledge of processes of past climate change is crucial to separate between natural and anthropogenic forcing, and to enhance the reliability of future climate projections. On a spatial scale, this region also comprises major oceanographic patterns including Boundary Current systems e.g., Kuroshio/Oyashio, or the Alaskan Stream and several frontal regions. In addition, complex exchange processes and interactions between the open North Pacific and its marginal seas from low to high latitudes create a spatially heterogenous region, with small-scale mixing and both temporal and spatial variations in the system at atmospheric, and oceanic surface, subsurface and deep levels.
We aim to provide a comprehensive collection of original contributions and syntheses that foster the dynamic and four-dimensional understanding of the evolution of climate and oceanic modes in the North Pacific, including links and teleconnections to low latitudes (e.g. West Pacific Warm Pool) and polar regions, as well as to global ocean circulation and climate patterns.
We welcome contributions across all time scales, from the geological past to present. Results may be based on instrumental or proxy data, as well as climate modelling. The session should advance our process-oriented understanding of the complex role of the North Pacific and its marginals seas in regulating biogeochemical cycles, ocean overturning circulation, and ocean-atmosphere carbon budgets. These past climate scenarios can be used to create a framework for the identification of potential thresholds in the current, warming Earth system.

Files for download

Download all presentations (34MB)