AS3.14

Methane is an important greenhouse gas that has contributed ∼25% of the radiative forcing experienced to date. Despite methane’s short atmospheric lifetime (~10 years), global methane concentrations have grown more than three times faster than carbon dioxide since the industrial revolution. This makes methane emission mitigation an effective way to reduce the short-term rate of warming. In contrast to carbon dioxide, anthropogenic methane emissions originate from a large variety and number of diffuse point sources that are mostly independent of combustion processes. As a result, systematic atmospheric measurements are needed to inform emission inventories and mitigation strategies.

This session will highlight research that focuses on methane emissions from human activities (e.g., fossil fuel infrastructure, fire, rice production, ruminants, landfills and waste). Particular emphasis is on studies collecting atmospheric observations at different spatio-temporal scales with the aim to (1) reduce the uncertainty in the measured magnitude of emissions, (2) identify source-specific emission patterns and mitigation opportunities, and (3) inform stakeholders, such as regulators and industry representatives, on mitigation pathways.

Share:
Co-organized by BG2
Convener: Stefan Schwietzke | Co-conveners: Andreea Calcan, Bryce F.J. Kelly, Christopher Konek
Displays
| Wed, 06 May, 14:00–15:45 (CEST)

Methane is an important greenhouse gas that has contributed ∼25% of the radiative forcing experienced to date. Despite methane’s short atmospheric lifetime (~10 years), global methane concentrations have grown more than three times faster than carbon dioxide since the industrial revolution. This makes methane emission mitigation an effective way to reduce the short-term rate of warming. In contrast to carbon dioxide, anthropogenic methane emissions originate from a large variety and number of diffuse point sources that are mostly independent of combustion processes. As a result, systematic atmospheric measurements are needed to inform emission inventories and mitigation strategies.

This session will highlight research that focuses on methane emissions from human activities (e.g., fossil fuel infrastructure, fire, rice production, ruminants, landfills and waste). Particular emphasis is on studies collecting atmospheric observations at different spatio-temporal scales with the aim to (1) reduce the uncertainty in the measured magnitude of emissions, (2) identify source-specific emission patterns and mitigation opportunities, and (3) inform stakeholders, such as regulators and industry representatives, on mitigation pathways.

Files for download

Download all presentations (258MB)