AS1.15

Recent extreme weather and climate episodes, including the European heatwaves of summer 2003 and June/July 2019, highlight the need to further our understanding of linear and non-linear (quasi-stationary) planetary and synoptic-scale Rossby wave dynamics in the atmosphere, and their impacts on weather and climate events. Abstracts are solicited that are dedicated to:
i) the dynamics of linear wave propagation or quasi-stationarity, of wave breaking, atmospheric blocking, or jets as atmospheric Rossby waveguides. This includes the role of local and remote drivers (e.g., the tropics, Arctic, or stratosphere).
ii) exploring the links between extreme weather/climate events and linear and non-linear Rossby waves, including wave breaking and/or blocking.
iii) quantifying model representation of Rossby waves in climate and numerical weather prediction models, including wave propagation and breaking.
iv) exploring the role of Rossby wave trains on predictability at lead times from medium range (~2 weeks) to seasonal time-scales. This includes blocking and wave propagation.
v) analyzing projected future changes in planetary or synoptic-scale Rossby waves, or in their future impacts on weather and climate events.

Share:
Co-organized by CL2
Convener: Rachel White | Co-conveners: Kai KornhuberECSECS, Olivia Romppainen-Martius, Volkmar Wirth
Displays
| Attendance Wed, 06 May, 08:30–10:15 (CEST)

Recent extreme weather and climate episodes, including the European heatwaves of summer 2003 and June/July 2019, highlight the need to further our understanding of linear and non-linear (quasi-stationary) planetary and synoptic-scale Rossby wave dynamics in the atmosphere, and their impacts on weather and climate events. Abstracts are solicited that are dedicated to:
i) the dynamics of linear wave propagation or quasi-stationarity, of wave breaking, atmospheric blocking, or jets as atmospheric Rossby waveguides. This includes the role of local and remote drivers (e.g., the tropics, Arctic, or stratosphere).
ii) exploring the links between extreme weather/climate events and linear and non-linear Rossby waves, including wave breaking and/or blocking.
iii) quantifying model representation of Rossby waves in climate and numerical weather prediction models, including wave propagation and breaking.
iv) exploring the role of Rossby wave trains on predictability at lead times from medium range (~2 weeks) to seasonal time-scales. This includes blocking and wave propagation.
v) analyzing projected future changes in planetary or synoptic-scale Rossby waves, or in their future impacts on weather and climate events.

Session assets

Session summary Download all presentations (108MB)