AS1.32

Ice and mixed-phase clouds largely contribute to the Earth’s radiation budget because of their high temporal and spatial coverage. Yet, the variability and complexity of their macro- and microphysical properties - consequence of intricate ice particle nucleation and growth processes - makes their study extremely challenging. As a result, large uncertainties still exist of our understanding of ice cloud processes, radiative effects and interactions with their environment (in particular, aerosols).

This session aims to advance our comprehension of ice clouds by bringing observation- and modelling-based research together. A PICO format is selected to further encourage exchanges between the communities.

A diversity of research topics shall be covered, highlighting recent advances in ice cloud observation techniques, modelling and subsequent process studies:

(1) Ice cloud observations from airborne, spaceborne, ground- or laboratory-based measurements and their derived products (retrievals), which are useful to understand process details, formation mechanisms and provide climatology.

(2) Model simulations (process-based, regional and global) on the other hand allow putting the detailed observations in a wider perspective, providing additional insights in the formation mechanisms and allowing for future predictions.

Both approches brought together can uniquely answer question regarding dynamical influence on ice cloud formation, life cycle, coverage, microphysical and radiative properties, crystal shapes, sizes and variability of ice particles in mixed-phase as well as ice clouds. Joint observation-modelling contributions are therefore particularly encouraged.

Share:
Convener: Hinrich Grothe | Co-conveners: Ahmed Abdelmonem, Christian Rolf, Odran Sourdeval, Sylvia Sullivan
Displays
| Attendance Tue, 05 May, 14:00–15:45 (CEST)

Ice and mixed-phase clouds largely contribute to the Earth’s radiation budget because of their high temporal and spatial coverage. Yet, the variability and complexity of their macro- and microphysical properties - consequence of intricate ice particle nucleation and growth processes - makes their study extremely challenging. As a result, large uncertainties still exist of our understanding of ice cloud processes, radiative effects and interactions with their environment (in particular, aerosols).

This session aims to advance our comprehension of ice clouds by bringing observation- and modelling-based research together. A PICO format is selected to further encourage exchanges between the communities.

A diversity of research topics shall be covered, highlighting recent advances in ice cloud observation techniques, modelling and subsequent process studies:

(1) Ice cloud observations from airborne, spaceborne, ground- or laboratory-based measurements and their derived products (retrievals), which are useful to understand process details, formation mechanisms and provide climatology.

(2) Model simulations (process-based, regional and global) on the other hand allow putting the detailed observations in a wider perspective, providing additional insights in the formation mechanisms and allowing for future predictions.

Both approches brought together can uniquely answer question regarding dynamical influence on ice cloud formation, life cycle, coverage, microphysical and radiative properties, crystal shapes, sizes and variability of ice particles in mixed-phase as well as ice clouds. Joint observation-modelling contributions are therefore particularly encouraged.

Session assets

Session materials Download all presentations (62MB)