GM6.2

The world’s deltas and coastal wetlands support over 350 million people, yet account for less than 1% of the Earth’s surface. They protect people and assets from flooding and erosion, are increasingly considered as part of ‘nature-based’ or ‘soft engineered’ flood and erosion protection approaches and support an extensive range of ecosystem services and high levels of biodiversity. Yet coastal wetlands and delta are facing myriad threats due to biodiversity loss, habitat degradation, sea-level rise, subsidence, sediment extraction and compaction, groundwater extraction and modifications of their upstream catchments. Predicting how these sedimentary environments respond to combinations of such drivers (e.g. the changed frequency/magnitude of storm events) requires greater knowledge of their resistive properties at a range of scales, from landform response to extreme events to whole-system response to steadily shifting baselines (e.g. sea level rise).
This session aims to bring together the state-of-the-science knowledge from a range of disciplines (geomorphology, hydrology, ecology, biogeochemical and social sciences). We are committed to supporting early career researchers and this session should be of interest to practitioners working in the field of flood and erosion protection, particularly in the river and coastal context.

Share:
Co-organized by OS2
Convener: Christopher HackneyECSECS | Co-conveners: Rachael CarrieECSECS, Frances DunnECSECS, Iris Moeller, Grigorios VasilopoulosECSECS
Displays
| Attendance Mon, 04 May, 16:15–18:00 (CEST)

The world’s deltas and coastal wetlands support over 350 million people, yet account for less than 1% of the Earth’s surface. They protect people and assets from flooding and erosion, are increasingly considered as part of ‘nature-based’ or ‘soft engineered’ flood and erosion protection approaches and support an extensive range of ecosystem services and high levels of biodiversity. Yet coastal wetlands and delta are facing myriad threats due to biodiversity loss, habitat degradation, sea-level rise, subsidence, sediment extraction and compaction, groundwater extraction and modifications of their upstream catchments. Predicting how these sedimentary environments respond to combinations of such drivers (e.g. the changed frequency/magnitude of storm events) requires greater knowledge of their resistive properties at a range of scales, from landform response to extreme events to whole-system response to steadily shifting baselines (e.g. sea level rise).
This session aims to bring together the state-of-the-science knowledge from a range of disciplines (geomorphology, hydrology, ecology, biogeochemical and social sciences). We are committed to supporting early career researchers and this session should be of interest to practitioners working in the field of flood and erosion protection, particularly in the river and coastal context.

Session assets

Session materials Download all presentations (155MB)