GM3.5

Transport of sediments in geophysical flows occurs in mountainous, fluvial, estuarine, coastal, aeolian and other natural or man-made environments on Earth and has been shown to play important formative roles in planets and satellites such as Mars, Titan, and Venus. Understanding the motion of sediments is still one of the most fundamental problems in hydrological and geophysical sciences. Such processes can vary across a wide range of scales - from the particle to the landscape - which can directly impact both the form (geomorphology) and, on Earth, the function (ecology and biology) of natural systems and the built infrastructure surrounding them. In particular, feedback between flow and sediment transport as well as interparticle interactions including size sorting are a key processes in surface dynamics, finding a range of important applications, from hydraulic engineering and natural hazard mitigation to landscape evolution and river ecology.
Specific topics of interest include (but are not restricted to):
-particle-scale mechanics of entrainment and disentrainment
-Discrete element modelling of granular processes and upscaling into continuum frameworks
-upscaling and averaging techniques for stochastic processes related to granular processes
-interaction among grain sizes in poorly sorted mixtures, including particle segregation
-momentum/energy transfer between turbulent flows and particles
-derivation and solution of equations in particular for multiphase flows
-reach scale sediment transport and geomorphic processes
-shallow water hydro-sediment-morphodynamic processes
-fluvial processes in response to reservoir operation schemes

Share:
Co-organized by HS13
Convener: Manousos Valyrakis | Co-conveners: Philippe Frey, Rui Miguel Ferreira, Alexandre Valance, Zhixian Cao, Kimberly Hill, Eric Lajeunesse, Mário J Franca
Displays
| Thu, 07 May, 08:30–12:30 (CEST)

Transport of sediments in geophysical flows occurs in mountainous, fluvial, estuarine, coastal, aeolian and other natural or man-made environments on Earth and has been shown to play important formative roles in planets and satellites such as Mars, Titan, and Venus. Understanding the motion of sediments is still one of the most fundamental problems in hydrological and geophysical sciences. Such processes can vary across a wide range of scales - from the particle to the landscape - which can directly impact both the form (geomorphology) and, on Earth, the function (ecology and biology) of natural systems and the built infrastructure surrounding them. In particular, feedback between flow and sediment transport as well as interparticle interactions including size sorting are a key processes in surface dynamics, finding a range of important applications, from hydraulic engineering and natural hazard mitigation to landscape evolution and river ecology.
Specific topics of interest include (but are not restricted to):
-particle-scale mechanics of entrainment and disentrainment
-Discrete element modelling of granular processes and upscaling into continuum frameworks
-upscaling and averaging techniques for stochastic processes related to granular processes
-interaction among grain sizes in poorly sorted mixtures, including particle segregation
-momentum/energy transfer between turbulent flows and particles
-derivation and solution of equations in particular for multiphase flows
-reach scale sediment transport and geomorphic processes
-shallow water hydro-sediment-morphodynamic processes
-fluvial processes in response to reservoir operation schemes

Files for download

Session materials Download all presentations (182MB)