GM3.7

The erosion, transport, temporary storage, and deposition of sediment govern the fluxes and distribution of solid mass on the surface of the Earth. The rate and extent of these mass fluxes is controlled by the complex interplay of surface processes that act across a range of spatial and temporal scales. Understanding these processes and their dependence on external forcing (e.g. climate, tectonics) and internal feedbacks (autogenic dynamics) is instrumental for constraining the cycling of sediment from source-to-sink, and to invert sedimentary archives for past environments.
A growing body of studies continues to develop a process-based understanding of the coupling between climate, tectonics, erosion, and the transport of solids across large catchments. Important insights into sediment recycling and residence time have been provided by recent advances in geochemical and geophysical techniques, highlighting the dynamic nature of sediment transport. However, many challenges remain including; (1) fully quantifying the time- and spatial scales of sediment transport, (2) tracking signals across catchments and inverting sedimentary records, and (3) assessing the importance of large and infrequent events in controlling erosion and sediment transport.
In this session we welcome field-based, experimental, and modelling studies, that (1) constrain mechanisms, rates, and scales of erosion, transport, and deposition processes, (2) analyse the influence of internal and external forcing on these processes, (3) investigate the propagation of geochemical or physical signals across the earth surface (such as changes in sedimentary fluxes, grain size distributions, cosmogenic nuclide concentrations) and (4) invert sedimentary archives to learn about past environments. Contributions across all temporal and spatial scales are welcome. We particularly encourage early career scientists to apply for this session.

Solicited presenter: Elizabeth Dingle (Simon Fraser University)

Share:
Co-organized by BG4/HS13/SSP3
Convener: Oliver FrancisECSECS | Co-conveners: Aaron BufeECSECS, Lisa HarrisonECSECS, Stefanie TofeldeECSECS
Displays
| Attendance Fri, 08 May, 10:45–12:30 (CEST)

The erosion, transport, temporary storage, and deposition of sediment govern the fluxes and distribution of solid mass on the surface of the Earth. The rate and extent of these mass fluxes is controlled by the complex interplay of surface processes that act across a range of spatial and temporal scales. Understanding these processes and their dependence on external forcing (e.g. climate, tectonics) and internal feedbacks (autogenic dynamics) is instrumental for constraining the cycling of sediment from source-to-sink, and to invert sedimentary archives for past environments.
A growing body of studies continues to develop a process-based understanding of the coupling between climate, tectonics, erosion, and the transport of solids across large catchments. Important insights into sediment recycling and residence time have been provided by recent advances in geochemical and geophysical techniques, highlighting the dynamic nature of sediment transport. However, many challenges remain including; (1) fully quantifying the time- and spatial scales of sediment transport, (2) tracking signals across catchments and inverting sedimentary records, and (3) assessing the importance of large and infrequent events in controlling erosion and sediment transport.
In this session we welcome field-based, experimental, and modelling studies, that (1) constrain mechanisms, rates, and scales of erosion, transport, and deposition processes, (2) analyse the influence of internal and external forcing on these processes, (3) investigate the propagation of geochemical or physical signals across the earth surface (such as changes in sedimentary fluxes, grain size distributions, cosmogenic nuclide concentrations) and (4) invert sedimentary archives to learn about past environments. Contributions across all temporal and spatial scales are welcome. We particularly encourage early career scientists to apply for this session.

Solicited presenter: Elizabeth Dingle (Simon Fraser University)

Session assets

Session materials Download all presentations (144MB)