GM4.3
Land cover dynamics and geomorphic processes in hillslope environments: from data acquisition to modelling and management practices
Co-organized by SSS2
Convener: Elmar SchmaltzECSECS | Co-conveners: Alessio CislaghiECSECS, Stefan StegerECSECS
Displays
| Attendance Tue, 05 May, 14:00–15:45 (CEST)

Land cover plays a key role for geomorphic processes in steep-land environments. It exhibits both beneficial and adverse effects on hillslope denudation and substantially influences landscape evolution. Land cover information becomes of fundamental importance in many applications for assessing soil erosion loss and landslide activity at difference scales, from local to global analysis. Apparent land cover of a landscape affects the accuracy of most investigations that aim to detect, observe, analyse, model or predict geomorphic and landform-shaping processes. In contrast, denudational processes have a strong impact on both natural ecosystems and cultivated land, leading from increasing environmental diversity to economic damages.
This session is designed to cluster the most recent scientific researches on the analyses, modelling and prediction of soil erosion and landslide processes that are directly linked to land cover dynamics. Such variations can alter the soil properties as soil reinforcement and soil aggregation, and make the modelling and prediction of higher complexity.
Studies that pay heed on the impact of land cover changes on shallow or deep-seated and transient or long-term slope instabilities as well as surface water flow and related soil erosion processes are welcome. Research abstracts are invited to address:
1. observation and detection of different land cover types, land use changes and occurrences of erosion or landslides using a wide spectrum of technologies, from field measurements to remote sensing techniques;
2. analyses on the relationship between land cover and geomorphic processes from local to regional scale;
3. prediction of impacts on surface water flow, erosion and slope stability due to land cover changes;
4. innovative modelling approaches for assessing soil instabilities (statistical, physically-based, numerical) that focus on model implementation, parameterisation, uncertainties and simulation of land cover evolution;
5. development of guidelines and regulations for practitioners, technicians, policy and decision makers.
We highly welcome pioneering research from all fields, especially from geomorphology, agricultural science, soil science, geotechnics and environmental engineering. In particular, young career scientists are encouraged to contribute to the session with original and advanced studies.