NH4.4/SM1.15
Statistics and pattern recognition applied to the spatio-temporal properties of seismicity

Convener: Stefania Gentili
Co-conveners: Rita Di Giovambattista, Álvaro González, Filippos Vallianatos

Chat time: Monday, 4 May 2020, 14:00–15:45 (Vienna time)
Welcome to the session NH4.4/SM1.15:

Statistics and pattern recognition applied to the spatio-temporal properties of seismicity

- In the following we show some slides summarizing the results for the session presentation. If you are interested, go to the presentations to have further details.

- Presentations will be available on this website until the end of May.
Chat Timetable

• A text-based chat is scheduled on Monday, 4 May 2020, 14:00–15:45 (Vienna time) for further details see https://egu2020.eu/sharing_geoscience_online/how_to_use_the_chats.html

• During the live chat, all displays will be called in order of appearance in the Display list (next two slides) to give a 1-2 min summary of the work

• After the summary, we will have some time for questions/short discussion. In order to give enough time to all authors, there will be a maximum total time (summary+questions) of 8 minutes for each author.

• Once completed the summaries and questions for each author, we will leave some time at the end of the chat for further questions/short discussion.

• The presentations will be available until the end of May from this webpage and comments can be sent to the authors
<table>
<thead>
<tr>
<th>Authors</th>
<th>Display</th>
<th>Abstract</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peidong Shi, Léonard Seydoux, and Piero Poli</td>
<td>D2012</td>
<td>EGU2020-11655</td>
<td>Direct fault states assessment from wavefield properties: application to the 2009 L'Aquila earthquake</td>
</tr>
<tr>
<td>Giuseppe Petrillo, François Landes, Eugenio Lippiello, and Alberto Rosso</td>
<td>D2014</td>
<td>EGU2020-4676</td>
<td>The influence of the brittle-ductile transition zone on aftershock and foreshock occurrence</td>
</tr>
<tr>
<td>Matteo Taroni and Aybige Akinci</td>
<td>D2015</td>
<td>EGU2020-22578</td>
<td>Forecasting M≥5.0 earthquakes in Italy using a new adaptive smoothing seismicity approach</td>
</tr>
<tr>
<td>Zakaria Ghazoui, Jean-Robert Grasso, Arnaud Watlet, Corentin Caudron,</td>
<td>D2016</td>
<td>EGU2020-14510</td>
<td>Does the seismic cycle slip toward randomness?</td>
</tr>
<tr>
<td>Abror Karimov, Sebastien Bertrand, Yusuke Yokoyama, and Peter van der Beek</td>
<td></td>
<td></td>
<td>Variations in the temporal evolution of seismicity pointed out by non-extensive statistical physics approach</td>
</tr>
<tr>
<td>Renata Rotondi and Elisa Varini</td>
<td>D2017</td>
<td>EGU2020-10098</td>
<td></td>
</tr>
<tr>
<td>Ilya Zaliapin and Yehuda Ben-Zion</td>
<td>D2018</td>
<td>EGU2020-12056</td>
<td>Quantifying preparation process of large earthquakes: Damage localization and coalescent dynamics</td>
</tr>
<tr>
<td>and Naidan Yun</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Display</td>
<td>Abstract</td>
<td>Title</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Yifan Yin, Stefan Wiemer, Edi Kissling, Federica Lanza, and Bill Fry</td>
<td>D2022</td>
<td>EGU2020-4051</td>
<td>Seismic rate change as a tool to investigate remote triggering of the 2010-2011 Canterbury earthquake sequence, New Zealand</td>
</tr>
<tr>
<td>Álvaro González, Isabel Serra, and Álvaro Corral</td>
<td>D2024</td>
<td>EGU2020-13309</td>
<td>The global statistical distribution of time intervals between consecutive earthquakes</td>
</tr>
<tr>
<td>Gianfranco Cianchini and the SAFE Team</td>
<td>D2026</td>
<td>EGU2020-22588</td>
<td>Geosystemics View of Earthquakes</td>
</tr>
<tr>
<td>Polyzois Bountzis, Tasos Kostoglou, Vasilios Karakostas, and Eleftheria Papadimitriou</td>
<td>D2028</td>
<td>EGU2020-4788</td>
<td>A study of earthquake clustering in central Ionian Islands through a Markovian Arrival Process</td>
</tr>
<tr>
<td>Stefania Gentili and Rita Di Giovambattista</td>
<td>D2029</td>
<td>EGU2020-8184</td>
<td>How strong will be the following earthquake?</td>
</tr>
<tr>
<td>Rita Di Giovambattista, Giovanna Calderoni, and Antonio Rovelli</td>
<td>D2030</td>
<td>EGU2020-22596</td>
<td>Spatio-temporal variations of source parameters in the nucleation zone of the 6 April 2009, Mw 6.1 L’Aquila Earthquake</td>
</tr>
<tr>
<td>Jordi Baro, Joern Davidsen, and Álvaro Corral</td>
<td>D2031</td>
<td>EGU2020-4948</td>
<td>Topological properties of aftershock clusters in a viscoelastic model of quasi-brittle failure</td>
</tr>
</tbody>
</table>
Summarizing slides
Direct fault states assessment from wavefield properties: application to the 2009 L’Aquila earthquake

Peidong Shi¹*, Leonard Seydoux¹, Piero Poli¹

Continuous wavefield → Wavefield features + machine learning → Temporal evolution of fault states
Does the seismic cycle slip towards randomness?

Zakaria Ghazouani, Jean-Robert Greaves, Arnaud Weisbe, Corentin Caussade, Aziz Rashidov, Sebastian Bertrand, Yusuke Yokoyama, and Peter van der Beek

Research Questions:

- To which statistical distribution does the longest continuous paleoseismic Himalayan record (Lake Puna sediments core, Nepal) best fit?

- When testing the ergodic hypothesis, is there a similarity of inter-event time distribution between the instrumental data (whole Himalaya) and the paleoseismic data (Lake Puna sediments core, Nepal)?

- Do we find similarities in inter-event time distribution for different paleoseismic catalogues originating from different tectonic settings?

- Is there a universal distribution (paleo. and inst. data considered)?

- Where does this leave us in terms of seismic hazard?
Variations in the temporal evolution of seismicity pointed out by non-extensive statistical physics approach
R. Rotondi G. Bressan E. Varini

Aim: to study a ‘descriptor’ of the criticality of a seismogenic system and to interpret its variations as indicator of seismic phase change

- we have estimated the q-exponential distributions in both sub-additive and super-additive case on time windows of 100 events shifted at each event

- the value of the q entropic index (and of the entropy) is significantly less than its average value since long time (even years) before the strongest shocks

Examples of (left) $q < 1$ and (right) $q > 1$ q-exponential distributions
Quantifying preparation process of large earthquakes:
Damage localization and coalescent dynamics

Ilya Zaliapin
Department of Mathematics and Statistics
University of Nevada, Reno

Yehuda Ben-Zion
Department of Earth Sciences
University of Southern California

Main Findings:

(1) Generation of rock damage around the eventual rupture zones of M>7 earthquakes in SoCal and Baja.

(2) Progressive localization patterns 2-3 yr before M>7 earthquakes.

(3) Rapid coalescence of small events into clusters in the final year before the large events.

Increase of earthquake clustering prior to Landers, M7.3

Highest value within 9 years
Seismic rate change as a tool to investigate remote triggering of the 2010-2011 Canterbury earthquake sequence, New Zealand

Yifan Yin, Stefan Wiemer, Edi Kissling, Federica Lanza, and Bill Fry

In sparsely instrumented places, careful event discovery reveal diverse seismic response of the crust to major subduction-zone events. In this study, by adding microseismicity, we found that the North Canterbury plain undergoes seismic quiescence before the 2010 Darfield Earthquake. Dilatations produced by 2009 Dusky Sound Earthquake concentrate on north of north Canterbury Plain, provides ideal stress change for the Darfield Earthquake.

Figure. (A) East-west detrended GPS displacement. (B) Areal dilatation after Dusky Sound Earthquake (C) Z statistic same as fig 4C with insignificant region toned out. The thick pale grey lines shows the fast-moving plate-boundary faults (Litchfield et al., 2014)
The global statistical distribution of time intervals between consecutive earthquakes

Álvaro González
Isabel Serra
Álvaro Corral
www.geonaut.eu

Goals:

• Which statistical distribution best fits the data?
• Is there a universal distribution?
• Can Poissonian occurrence be rejected for the whole series of the largest earthquakes?
“studies the Earth system from the holistic point of view, looking with particular attention at self-regulation phenomena and relations among the parts composing it”.
A study of earthquake clustering in central Ionian Islands through a Markovian Arrival Process

P. Bountzis¹, T. Kostoglou¹, V. Karakostas¹ and E. Papadimitriou¹

(1) Geophysics Department, School of Geology, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece

- Detection of the main seismic clusters based on a temporal stochastic point process, MAP, combined with a density-based spatial clustering algorithm, DBSCAN
- Identified seismic excitations consistent with ones that have been derived by manually studied aftershock sequences
- Clustered component of seismicity is dominant in Central Ionian Islands due to the two main sequences (2014 Kefalonia doublet with $Mw6.1$ and $Mw6.0$ and the 2015 Lefkada $Mw6.5$ earthquake)
How strong will be the following earthquake?

S. Gentili and R. Di Giovambattista

MOTIVATION

PREDICTION OF A SECOND LARGE EARTHQUAKE BASED ON AFTERSHOCK SEQUENCE

The Database

Pattern recognition in the first hours of clusters

NESTORE

NExt STrOng Related Earthquake

Estimation of strong aftershock probability (A class) during cluster
Spatio-temporal variations of source parameters in the nucleation zone of the 6 April 2009, M_w 6.1 L'Aquila Earthquake

G. Calderoni, A. Rovelli, and R. Di Giovambattista
Istituto Nazionale di Geofisica e Vulcanologia
EGU General Assembly 4-8 May 2020

- Spatio-temporal variations of source parameters of clustered earthquakes located near the hypocenter of the M_w 6.1 L'Aquila earthquake.
- Inter-event variability results in a factor of 10, well beyond the individual-event uncertainty.
- The temporal change observed might be interpreted as a spatial variation due to the earthquake migration into the locked portion of the fault originating the main shock.
Topological properties of aftershock clusters in a viscoelastic model of quasi-brittle failure

Jordi Baró a,b,*, Jörn Davidsen a, Alvaro Corral b

a Complexity Science Group, Dept. of Physics and Astronomy, Univ. of Calgary, Calgary, AB, T2N 1N4, Canada.
b Centre for Mathematical Research (CRM), Barcelona, 08193, Spain.
* jbaro@crm.cat

Material failure at different scales and processes can be modeled as an emergent feature of micromechanical systems in terms of avalanche dynamics. Among experimental observations, event-event triggering —aftershocks— is common in a common feature in seismological catalogs, acoustic emission experiments [1] and even other phenomena. In parallel, the statistical properties of triggering in such catalogs are often modeled as stochastic epidemic branching or linear Hawkes processes [4,5]. In the micromechanical approach, viscoelastic stress transfer and after-slip are among the proposed mechanism behind triggering and aftershocks.

Here we address a simple question:

Do aftershock sequences obtained in micromechanical models agree with the predictions and ideas behind the epidemic branching framework?

We introduce two fibrous models as prototypes of viscoelastic fracture [2] which (i) provide an analytical explanation to the acceleration of activity in absence of critical failure observed in acoustic emission experiments [3]; (ii) reproduce the typical spatio-temporal properties of triggering found in field catalogs, acoustic emission experiments; and (iii) agree with the one-to-one causality established in epidemic models, but display discrepancies with the branching topological properties predicted by stochastic models. These are probably caused by physical constrains and nonstationary parameters.

Please, visit the display for results and details!
Comments are welcomed: https://meetingorganizer.copernicus.org/EGU2020/EGU2020-4948.html