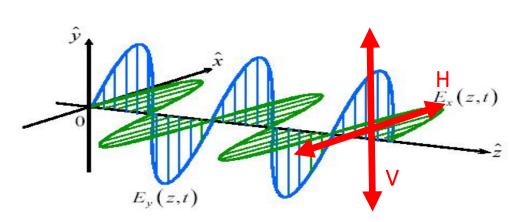


Advanced Bridge Monitoring Strategies by Polarimetric GB-SAR

Lilong Zou[†], Motoyuki Sato[‡], Fabio Tosti[†], and Amir M. Alani[†]

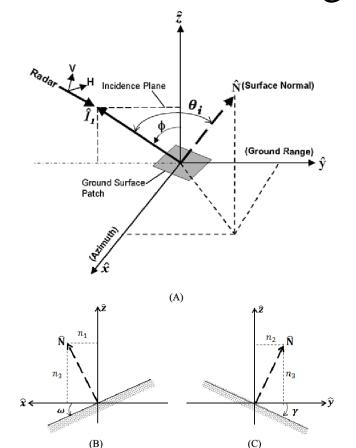
†School of Computing and Engineering, University of West London, U.K.


‡Center for Northeast Asian Studies, Tohoku University, Japan

2020, 05, 07

Radar polarimetric and polarimetric orientation angle

Polarimetric wave


$$\begin{bmatrix} E_{H}^{R} \\ E_{V}^{R} \end{bmatrix} = \frac{e^{-j2kr}}{\sqrt{4\pi r^{2}}} \begin{pmatrix} S_{HH} & S_{HV} \\ S_{VH} & S_{VV} \end{pmatrix} \begin{bmatrix} E_{H}^{T} \\ E_{V}^{T} \end{bmatrix}$$

$$\mathbf{E}^{R}$$

$$\mathbf{S}$$

$$\mathbf{E}^{T}$$

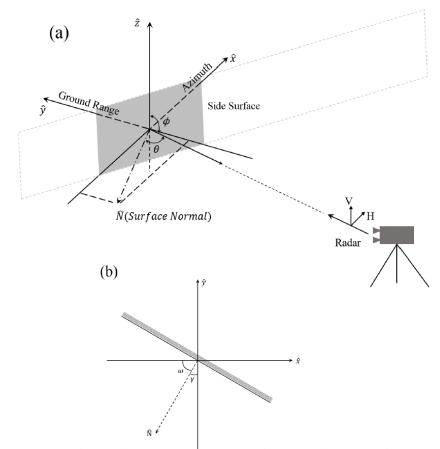
[S]: Scattering matrix

Polarimetric orientation angle (Jong-Sen Lee et. al 2018)

FASTGBSAR System EGUGeneral 2020

Parameter	Value
Operating frequency	17.2 GHz (Ku Band)
Range resolution	Up to 0.5 m
Maximum range	4 km
EIRP power	19 to 42 dBm
Operating temperature range	-25 o C to 60 o C
Sensor weight	10 kg
Accuracy	$\pm 0.01 \text{ mm}$
Power consumption	70 W

Polarimetric GB-SAR system



Field Measurement

Bridge monitoring by polarimetric GB-SAR system (Sendai, Japan)

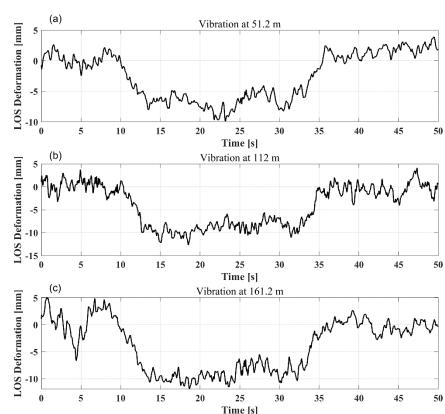
(a) Radar imaging geometry of the side surface. (b) The side surface projection in both azimuth and ground range direction.

Vertical Deformation Calculation

The polarimetric orientation angle (POA) can be expressed as:

$$\tan(-4\eta) = \frac{-4Re(\langle (S_{HH} - S_{VV})S_{HV}^* \rangle)}{-\langle |S_{HH} - S_{VV}|^2 \rangle + 4\langle |S_{HV}|^2 \rangle}$$

$$\xi = \begin{cases} \eta, & \text{if } n \leq \frac{\pi}{4} \\ -\eta - \frac{\pi}{2}, & \text{if } n > \frac{\pi}{4} \end{cases}$$


where ξ indicates the POA. The POA can also be obtained from the azimuth slope angle ω , ground range slope angle γ , and radar look angle ϕ based on the imaging geometry by the following equation

$$\tan(\xi) = \frac{\tan \omega}{-\tan \gamma \cos \phi + \sin \phi}, -\frac{\pi}{2} \le \xi \le \frac{\pi}{2}.$$

The local incidence angle θ can also be derived in terms of the local slopes and radar look angle, it can be expressed as:

$$\cos \theta = \frac{\tan \gamma \sin \phi + \cos \phi}{\sqrt{1 + \tan^2 \gamma + \tan^2 \omega}}$$

So that the radar look angle θ can be calculated with the above equations, and the vertical deformation can be known.

Vertical deformation of three different points of the bridge

