The application of Bayesian approaches in water quality modelling

Session conveners: Miriam GlendellECS, Ibrahim Alameddine, Lorenz AmmannECS, Hoseung JungECS, James E. Sample

HS2.3.3/BG4.28
EGU General Assembly 2020
Presentations
Presentations

<table>
<thead>
<tr>
<th>Key challenge</th>
<th>Key finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Craig Stow: Process based or probabilistic models?</td>
<td>**https://doi.org/10.5194/egusphere-egu2020-9925**</td>
</tr>
<tr>
<td>• Are complex models better?</td>
<td>• The benefits of Bayesian approaches</td>
</tr>
<tr>
<td>• The need for explicit uncertainty analysis of process-based models</td>
<td></td>
</tr>
<tr>
<td>• Specification of prior distribution</td>
<td></td>
</tr>
<tr>
<td>• Computational challenges</td>
<td></td>
</tr>
<tr>
<td>Song Qian: A normative definition of a Bayesian prior</td>
<td></td>
</tr>
<tr>
<td>https://doi.org/10.5194/egusphere-egu2020-17978</td>
<td></td>
</tr>
<tr>
<td>• How to derive and formulate a prior distribution?</td>
<td>• Two case studies presented:</td>
</tr>
<tr>
<td>• Prescriptive definition of a Bayesian prior</td>
<td>• Modelling of cyanobacterial toxins</td>
</tr>
<tr>
<td></td>
<td>• Improvement of chemical calibration curve</td>
</tr>
</tbody>
</table>
Presentations

<table>
<thead>
<tr>
<th>Key challenge</th>
<th>Key finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>George Arhonditsis: Castles built on sand or predictive limnology in action? The importance of Bayesian ensembles to support our ecological forecasts</td>
<td>• Many different model structures and many different parameter sets within a chosen model structure can acceptably reproduce the observed behavior of a complex environmental system</td>
</tr>
<tr>
<td></td>
<td>• Need to adopt a multi-model strategy rather than the single “best-fit” model Present a methodological framework to develop multi-model ensembles</td>
</tr>
<tr>
<td></td>
<td>• Implemented framework on 2 cases studies</td>
</tr>
<tr>
<td>Yong Liu and Sifeng Wu: Resilience indicator for ecosystems subject to high risk of irreversible degradation: a probabilistic method based on Bayesian inference</td>
<td>• Ecosystem degradation is usually abrupt with unexpected shifts</td>
</tr>
<tr>
<td></td>
<td>• Some ecosystems might be subject to high risks of irreversible degradation because of strong undesirable resilience</td>
</tr>
<tr>
<td></td>
<td>• A practical framework to identify sensitive regions for conservation as well as opportunities for mitigation</td>
</tr>
<tr>
<td></td>
<td>• Method implemented on lake eutrophication</td>
</tr>
<tr>
<td>Key challenge</td>
<td>Key finding</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| **Daniel Obenour et al.**
Assessing within-lake nutrient cycling through multi-decadal Bayesian mechanistic modeling | • Bayesian calibration of a mechanistic model to understand nutrient recycling from lake bottom sediments
• Combine mass-balance model with Bayesian inference
https://doi.org/10.5194/egusphere-egu2020-4232
Nutrients stored in lacustrine sediment are an important source of internal loading to the reservoir for multiple decades, and will dampen the effects of external watershed loading reductions |
| **Ibrahim Alameddine and Eliza Deutsch**
Understanding Harmful Algal Bloom Dynamics in a Mediterranean Hypereutrophic Reservoir insights from a Bayesian Network and a Structural Equation Model | • Identifying pathways between the physical lake conditions and the nutrient loads on one hand and ecological endpoint on the other
• Comparing BN and SEM model structures
https://doi.org/10.5194/egusphere-egu2020-6709
Prior model structure not supported by data
Models largely concur in structure
Both models capture temperature effects and direct nutrient pathways and highlight the importance of internal loading |
<table>
<thead>
<tr>
<th>Key challenge</th>
<th>Key finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Danlu Guo et al.: A Bayesian hierarchical model to predict spatio-temporal variability in river water quality at 102 catchments</td>
<td>Model improvements should focus on:</td>
</tr>
<tr>
<td>Challenges to explain temporal variability in water quality using statistical models</td>
<td></td>
</tr>
<tr>
<td>Linear statistical models are limited in representing water quality datasets with large proportions of below-detection-limit records</td>
<td>• Alternative statistical model structures to improve fitting for truncated data</td>
</tr>
<tr>
<td>• Better representation of non-conservative constituents by accounting for biogeochemical processes</td>
<td></td>
</tr>
<tr>
<td>Minkyu Jung et al.: A Hierarchical Bayesian Model for Spatio-Temporal Water Quality Modeling in a Changining Climate in South Korea</td>
<td>Hierarchical Bayesian model can capture the key aspects of the water quality parameters in terms of seasonality and their uncertainty</td>
</tr>
<tr>
<td>Difficult to obtain accurate predictions of water quality due to the large spatio-temporal variability in a changing climate</td>
<td></td>
</tr>
</tbody>
</table>

https://doi.org/10.5194/egusphere-egu2020-4725
https://doi.org/10.5194/egusphere-egu2020-21271
Key challenge

Lorenz Ammann et al.: Patterns in time-dependent parameters reveal deficits of a catchment-scale herbicide transport model

Deterministic dynamic water quality models are too rigid: they do not allow for the stochastic nature of the system and are susceptible to structural errors

Key finding

Introducing stochasticity through time-dependent parameters can reveal deficits in model structure and can allow for a better description of the intrinsic uncertainty of dynamic water quality models

Sakari Kuikka: Experiences in applying Bayesian network models in interdisciplinary water quality decision analysis

Developing integrative Bayesian models in interdisciplinary analysis

Different traditions and quality criteria of different scientific fields create both technical and human challenges to the modelling tasks

Key finding

Applications are based mainly on the use of expert knowledge, especially for decision options that have not been applied before

Bayesian decision analysis for management provides scientifically justified uncertainty estimates
<table>
<thead>
<tr>
<th>Key challenge</th>
<th>Key finding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camilla Negri et al.: Modelling phosphorus pollution risk in agricultural catchments using a spatially distributed Bayesian Belief Network**</td>
<td>Model captures the difference in P loss risk between catchments, probably caused by contrasting hydrological characteristics and soil P sources. Climate change and land use change scenarios crucial to inform targeting of mitigation measures</td>
</tr>
<tr>
<td>Diffuse pollution of phosphorus (P) from agriculture is a major pressure on water quality</td>
<td></td>
</tr>
<tr>
<td>Need to develop Decision Support Tools that can account for the uncertainty in both data and models</td>
<td></td>
</tr>
<tr>
<td>Magnus Norling: Rapid development and evaluation of fast process-based models in Mobius</td>
<td></td>
</tr>
<tr>
<td>Build and explore many model structures and evaluate model uncertainty</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modelling frameworks are a good alternative to one-size-fits-all models, and we hope Mobius will be a useful tool for promoting more robust modelling</td>
</tr>
</tbody>
</table>
Discussion
<table>
<thead>
<tr>
<th>Challenge</th>
<th>Question</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model complexity and uncertainty assessment</td>
<td>Do we need simpler models, faster models, or both?
Developments in computational capacity have led to more complex models, not necessarily to better predictive performance</td>
<td>Craig Stow Magnus Norling</td>
</tr>
<tr>
<td>Prior distributions</td>
<td>What is a good prior?
Expert elicitation, informative, and non-informative priors</td>
<td>Song Qian Daniel Obenour</td>
</tr>
<tr>
<td>Model structural uncertainty</td>
<td>Is our model structure adequate?
Model ensembles, flexible and fast frameworks for controlled model comparison, flexibility in model structure through time-dependent parameters</td>
<td>George Arhonditsis Ibrahim Alameddine Magnus Norling Lorenz Ammann</td>
</tr>
<tr>
<td>Representing spatio-temporal variability in models</td>
<td>Is our input data adequate?
How do you decide on your spatio-temporal scale?
Data resolution – spatial & temporal, uncertainty in model predictions</td>
<td>Minkyu Jung Danlu Guo</td>
</tr>
</tbody>
</table>
Discussion Points

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Question</th>
<th>Examples</th>
</tr>
</thead>
</table>
| Need for decision support tools with explicit uncertainty quantification | What is the way forward in using models for decision support? | Sakari Kuikka
Camilla Negri
Craig Stow |
| | Are we effectively integrating uncertainties in our decision making process? | |
| | • Different traditions and quality criteria from different scientific | |
| | fields (biology, sociology and environmental economics) create both | |
| | technical and human challenges to the modelling tasks | |
| | • Bayesian decision analysis for management provides scientifically | |
| | justified uncertainty estimates | |
| Ecological system complexity and resilience – impacting effectiveness of | How best to simulate complex biophysical systems? | Yong Liu
Daniel Obenour
Ibrahim Alameddine |
| mitigation interventions | • Accounting for unexpected shifts in ecosystem states | |
| | • Modelling nutrient recycling from sediments | |
| | • Identifying pathways and feedbacks between drivers and response | |
| | variables | |
Important announcements
Thank you for supporting this session in this **EXCEPTIONAL** year – we look forward to meeting you in person in Vienna at EGU 2021!

SPECIAL ISSUE ALERT

- We are proposing a *Special Issue* on ‘**Frontiers in the application of Bayesian approaches in water quality modelling**’ in the EGU *Hydrology and Earth Systems Science Journal*
- Open both to presenters at this session over the past two years and to the wider community
- Interested to contribute to the Special Issue? Please get in touch with **miriam.glendell@hutton.ac.uk**