

HS8.3.4/SSS8.15: Plant-Soil Interactions

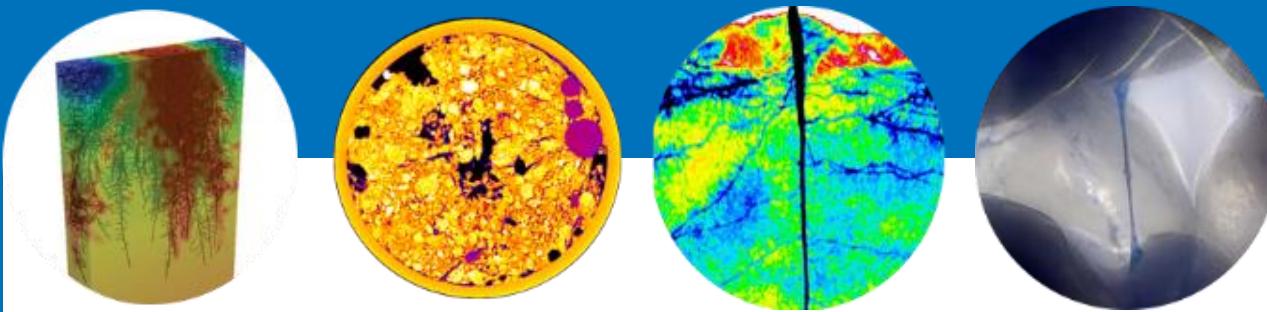
Conveners:

Mohsen Zarebanadkouki
Chair of Soil Physics
Uni of Bayreuth

Valentin Couvreur
Earth and Life Institute
University of Louvain

John Koestel
Agroscope

Martin Bouda
Postdoctoral Fellow
Inst. Botany, Czech Acad. Sci.



Naftali Lazarovitch
Ben-Gurion University
of the Negev

Tuesday 5 May 2020, Time 14:00 - 15:45

Vienna, 3–8 May 2020

Session overview

This session targets researchers investigating plant-soil interactions **from the rhizosphere to the field scale** like

- Measuring and modeling water and solute fluxes across the soil-plant-atmosphere continuum
- Novel experimental and modeling techniques assessing below-ground plant processes
- Bridging the knowledge gap between biologically and physically oriented research in soil and plant sciences
- Identification of plant strategies to better access and use resources from soil under abiotic stress

How the session will work

The session takes place as a text-based online chat on Tuesday 05 May 2020 from 14:00 to 15:45.

During the chat, we will invite the authors successively as appeared in our program (the scheduled time may change as we are still expecting the authors to submit their presentations).

Based on the number of displays with submitted materials, **we estimate about 5 minutes per display.**

To facilitate the discussion of your display, we recommend you prepare **Four highlights of your research** in advance. Then paste it into your chat room when the convener invites you to present your abstract at a relevant point. These highlights should cover:

- What is the main scientific question that your abstract addresses?
- What is the main methodology used in your abstract?
- What are your key findings?
- What is your main conclusion?

To get the discussions started quickly, we recommend you **limit each highlight to at most 20 words.**

Following your introduction, there will be an opportunity for those attending to ask questions and start a discussion about your work.

For the audience, we recommend having **two windows** of your internet browser open simultaneously: One for the chat and another for viewing the presentation uploaded by the presenters. The presenters may refer to some slides or figures included in the presentation during the text-based chat. We encourage you also to download and view the loaded presentations before the online chat.

Primarily program (Part 1)

D430 | EGU2020-20261

[Root traits as key proxies to unravel plant and ecosystem functioning: entities, trait selection and\[...\]](#)

Boris Rewald et al.

D431 | EGU2020-9791

[Tree species interaction and soil depth affect the response of root exudates to drought](#)

Melanie Brunn et al.

D433 | EGU2020-1196

[Visualisation and quantification of wheat root system architecture and soil moisture distribution in\[...\]](#)

Tinashe Mawodza et al.

D437 | EGU2020-20041

[From the root's point of view: understanding the plant response to beneficial microbes, with p\[...\]](#)

Borjana Arsova et al.

D438 | EGU2020-11660

[Root hairs bridge the gap between roots and soil water](#)

Patrick Duddek et al.

D440 | EGU2020-13397

[Unravelling the complex interactions between root development and soil moisture profiles in the soil\[...\]](#)

Debora Cynthia Maan et al.

D441 | EGU2020-14587

[Quantifying and mapping citrate exudation in soil-grown root systems](#)

Raphael Tiziani et al.

D442 | EGU2020-19056

[Root development under fluctuating soil physical stress – plastic and elastic responses](#)

Tino Colombi et al.

D443 | EGU2020-22007

[Inferring plant physiologic parameters for root water uptake modelling from high frequency in-situ i\[...\]](#)

Stefan Seeger et al.

D444 | EGU2020-693

[Reconstructing root system architectures from non-invasive imaging techniques for the use in functio\[...\]](#)

Magdalena Landl et al.

Primarily program (Part 2)

D445 | EGU2020-13701

[**How heterogenous distributions of hydrophobicity affects the capillary rise in soil**](#)

Jonas Bentz et al.

D448 | EGU2020-21832

[**Automatizing MiniRhizotron Image Acquisition**](#)

Boris Rewald et al.

D449 | EGU2020-13520

[**Root water uptake and its pathways across the root: quantification at the cellular scale**](#)

Mohsen Zarebanadkouki et al.

D452 | EGU2020-15591

[**Pore scale simulations of how mucilage alters connectivity of liquid and gas phase in the rhizosphere**](#)

Omid Esmaelipoor Jahromi et al.

D453 | EGU2020-4844

[**Innovative physiological indicators for drought stress in banana**](#)

Mathilde Vantyghem et al.

D455 | EGU2020-6284

[**Impact of vegetation species on soil pore system and soil hydraulic properties in the high Andes**](#)

Sebastián Páez-Bimbo et al.

D456 | EGU2020-9364

[**Quantifying how plants with different species-specific water-use strategies cope with the same drought**](#) [...]

Deepanshu Khare et al.

D458 | EGU2020-11573

[**The role of vegetation in the redistribution of infiltration in a semi-arid zone**](#)

Ana Berenice García Pérez et al.

D461 | EGU2020-16227

[**Soil penetration resistance affected by root exudates**](#)

Ravi Kumar Mysore Janakiram et al.

D464 | EGU2020-21559

[**Root dynamics and soil-enzyme activities in field bean/barley intercrops**](#)

Roberto Cardelli et al.