EGU21-10255
https://doi.org/10.5194/egusphere-egu21-10255
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Global soil erosion: Storm on the horizon 

Pasquale Borrelli1, David A. Robinson2, Panos Panagos3, Emanuele Lugato3, Jae E. Yang4, Christine Alewell5, David Wuepper6, Luca Montanarella3, and Cristiano Ballabio3
Pasquale Borrelli et al.
  • 1Department of Earth and Environmental Sciences, University of Pavia, Via Ferrata, 1, 27100 Pavia, Italy (pasquale.borrelli@unipv.it)
  • 2UK Centre for Ecology and Hydrology, Environment Centre Wales, Bangor LL57 2UW, United Kingdom
  • 3European Commission, Joint Research Centre (JRC), Ispra (VR) 21027, Italy
  • 4Department of Biological Environment, Kangwon National University, Chuncheon 24341, Republic of Korea
  • 5Environmental Geosciences, University of Basel, Basel 4056, Switzerland
  • 6Agricultural Economics and Policy, ETH Zurich, Zurich 8092, Switzerland

We use the latest projections of climate and land use change (year 2070) to assess potential global soil erosion rates by water erosion (interrill and rill processes) (Borrelli et al., 2020) using the RUSLE-based semiempirical modeling platform (GloSEM) (Borrelli et al., 2017). With some degree of uncertainty, GloSEM allows prediction of both state and change of soil erosion, identifying hotspots thanks to its high resolution (250 × 250 m) and predicting future variation based on projections of change in land use, soil conservation practices, and climate change.

Three alternative scenarios (2.6, 4.5, and 8.5) are tested using the Shared Socioeconomic Pathway and Representative Concentration Pathway (SSP-RCP) (LUH2 data) and 14 General Climate Models (GCMs) (WorldClim data), for a total of 42 modelling scenarios.

In the 2015 scenario, we estimate global soil erosion equal to 43 (+9.2/−7) Pg yr−1; with a study area covering ∼95.5% of the Earth’s land surface (in Borrelli et al. 2017 the study area was ~84.1% of the Earth’s land surface). The future scenarios suggest that socioeconomic developments impacting land use will either decrease (SSP1-RCP2.6–10%) or increase (SSP2-RCP4.5 +2%, SSP5-RCP8.5 +10%) water erosion by 2070. By contrast, climate projections, for all global dynamics scenarios, indicate a trend, moving toward a more vigorous hydrological cycle, which could increase global water erosion (+30 to +66%). Quantitatively, 56.1 (+20.6+ /- 16.4) Pg yr−1, 64.8 (+28.5/-21.4) Pg yr−1, and 71.6 (+32.5/-24.7) Pg yr−1 are predicted for the SSP1-RCP2.6, SSP2-RCP4.5, and SSP5-RCP8.5 scenarios, respectively.

The modeling framework presented in this study adopts standardized data in an adequate format to communicate with adjacent disciplines and moves us toward robust, reproducible, and open data science.

 

References

Borrelli, P., Robinson, D.A., Fleischer, L.R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schütt, B., Ferro, V. and Bagarello, V., 2017. An assessment of the global impact of 21st century land use change on soil erosion. Nature communications, 8(1), pp.1-13.

Borrelli, P., Robinson, D.A., Panagos, P., Lugato, E., Yang, J.E., Alewell, C., Wuepper, D., Montanarella, L. and Ballabio, C., 2020. Land use and climate change impacts on global soil erosion by water (2015-2070). Proceedings of the National Academy of Sciences, 117(36), pp.21994-22001.

How to cite: Borrelli, P., Robinson, D. A., Panagos, P., Lugato, E., Yang, J. E., Alewell, C., Wuepper, D., Montanarella, L., and Ballabio, C.: Global soil erosion: Storm on the horizon , EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-10255, https://doi.org/10.5194/egusphere-egu21-10255, 2021.