The 4.2 ka event and the end of the ‘Temple Period’ in Malta

Huw S. Groucutt
Extreme Events Research Group; Max Planck Institutes for Chemical Ecology, the Science of Human History, and Biogeochemistry; Jena, Germany (hgroucutt@ice.mpg.de)

The compact size of the semi-isolated Maltese archipelago and its relatively challenging environmental conditions, with limited soil cover and variable precipitation averaging around 600 mm a year, mean that the area offers an important case study of human-environment interactions. Following an initial phase of Neolithic settlement, the ‘Temple Period’ in Malta began from around 5.8 ka and within a few hundred years the spectacular ‘temples’ which characterize the period and are among the oldest buildings in the world began to be constructed. After over a thousand years this long-lived culture came to a seemingly abrupt end at ca. 4.4 to 4.2 ka, and was followed by Bronze Age societies with radically different material culture, funerary behaviour, and architecture. Various ideas concerning the reasons for the end of the Temple Period have been expressed. These range from climate change, to invasion, to social conflict resulting from the development of a powerful ‘priesthood’. Here, the idea that the end of the Temple Period was caused by aridity induced by the 4.2 ka event is tested. The 4.2 ka event is a classic example of an abrupt climate episode, and while it has been linked with several examples of significant societal change, such as the end of the Old Kingdom in Egypt, its details and relevance have been debated. To evaluate the Maltese example, archaeological data is fused with an understanding of the geology and palaeoenvironment of Malta, as well as consideration of the wider regional situation at this time in terms of demography and material culture, as well as the possible role of factors such as disease epidemics. The Maltese example forms a fascinating case study for understanding issues such as chronological uncertainty, disentangling cause and effect when several different processes are involved, and the role of abrupt environmental change in impacting human societies. Ultimately, it is suggested that the 4.2 ka event played a significant role in the end of the Temple Period, but this has to be understood within the specific geological and societal circumstances of the Maltese islands.