Scaling seismic fault thickness from the laboratory to the field

Thomas P. Ferrand¹, Stefan Nielsen², Loïc Labrousse³, and Alexandre Schubnel⁴

¹Institut des Sciences de la Terre d’Orléans, Université d’Orléans / CNRS UMR-7327, Orléans, France.
²Department of Earth Sciences, Durham University, Durham DH1 5ED, United Kingdom.
³Institut des Sciences de la Terre de Paris, Sorbonne Université, Campus Pierre et Marie Curie / CNRS UMR-7193, Paris, France.
⁴Laboratoire de Géologie de l’Ecole Normale Supérieure, PSL Research University / CNRS UMR-8538, Paris France.

Pseudotachylytes originate from the solidification of frictional melt, which transiently forms and lubricates the fault plane during an earthquake. Here we observe how the pseudotachylyte thickness a scales with the relative displacement D both at the laboratory and field scales, for measured slip varying from microns to meters, over six orders of magnitude. Considering all the data jointly, a bend appears in the scaling relationship when slip and thickness reach ∼1 mm and 100 µm, respectively, i.e. $M_W > 1$. This bend can be attributed to the melt thickness reaching a steady-state value due to melting dynamics under shear heating, as is suggested by the solution of a Stefan problem with a migrating boundary. Each increment of fault is heating up due to fast shearing near the rupture tip and starting cooling by thermal diffusion upon rupture. The building and sustainability of a connected melt layer depends on this energy balance. For plurimillimetric thicknesses ($a > 1$ mm), melt thickness growth reflects in first approximation the rate of shear heating which appears to decay in $D^{-1/2}$ to D^{-1}, likely due to melt lubrication controlled by melt + solid suspension viscosity and mobility. The pseudotachylyte thickness scales with moment M_0 and magnitude M_W; therefore, thickness alone may be used to estimate magnitude on fossil faults in the field in the absence of displacement markers within a reasonable error margin.