Solar Orbiter/Radio and Plasma Wave observations during the first Venus flyby

Niklas J. T. Edberg1, Lina Hadid2, Milan Maksimovic3, Stuart D. Bale4,5, Thomas Chust2, Yuri Khotyaintsev1, Volodya Krasnoselskikh6, Matthieu Kretzschmar6,7, Eric Lorfière8, Dirk Plettemeier9, Jan Souček10, Manfred Steller11, Štěpán Štverák12, Pavel Trávníček4,12, Andris Vaivads13, Antonio Vecchio14, Tim Horbury15, and the RPW team & MAG team*

1Swedish Institute of Space Physics - Uppsala, Frösön, Sweden (ne@irfu.se)
2LPP, CNRS, Ecole Polytechnique, Sorbonne Université, Observatoire de Paris, Université Paris-Saclay, PSL Research University, Palaiseau, Paris, France
3LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Univ. Paris Diderot, Sorbonne Paris Cité, 5 place Jules Janssen, 92195 Meudon, France
4Space Sciences Laboratory, University of California, Berkeley, CA, USA
5Physics Department, University of California, Berkeley, CA, USA
6LPC2E, CNRS, 3A avenue de la Recherche Scientifique, Orléans, France
7Université d’Orléans, Orléans, France
8CNES, 18 Avenue Edouard Belin, 31400 Toulouse, France
9Technische Universität Dresden, Würzburger Str. 35, D-01187 Dresden, Germany
10Institute of Atmospheric Physics of the Czech Academy of Sciences, Prague, Czechia
11Space Research Institute, Austrian Academy of Sciences, Graz, Austria
12Astronomical Institute of the Czech Academy of Sciences, Prague, Czechia
13Department of Space and Plasma Physics, School of Electrical Engineering and Computer Science, Royal Institute of Technology, Stockholm, Sweden
14Research Institute for Mathematics, Astrophysics and Particle Physics Radboud University, Nijmegen, The Netherlands
15Department of Physics, Imperial College London, London SW7 2AZ, UK

We present measurements from the Radio and Plasma Wave (RPW) instrument suite onboard the Solar Orbiter mission during the first Venus encounter. RPW consists of several units and is capable of measuring both the electric and magnetic field fluctuations with three electric antennas and a search-coil magnetometer: The Low Frequency Receiver (LFR) cover the range from DC up to 10kHz when measuring the electric and magnetic waveform and spectra; the Thermal Noise and High Frequency Receiver (TNR-HFR) determines the electric power spectra and magnetic power spectra from 4kHz-20MHz, and 4kHz to 500kHz, respectively, to determine properties of the electron population; the Time Domain Sampler (TDS) measures and digitizes onboard the electric and magnetic field waveforms from 100 Hz to 250 kHz. The BIAS subunit measures DC and LF electric fields as well as the spacecraft potential, which gives a high cadence measure of the local plasma density when calibrated to the low-cadence tracking of the plasma peak from the TNR. Solar Orbiter approached Venus from the induced magnetotail and had its closest approach at an
altitude of 7500 km over the north pole of Venus on 27 Dec 2020. The RPW instruments observed a tail region that extended several 10’s of Venus radii downstream of the planet. The induced magnetosphere was characterized to be a highly dynamic environment as Solar Orbiter traversed the downstream tail and magnetosheath before it crossed the Bow Shock outbound at ~12:40 UT. Polarized whistler waves, high frequency electrostatic waves, narrow-banded emissions, possible electron double layers were observed. The fine structure of the bow shock could also be investigated in detail. Solar Orbiter could hence enhance the knowledge of the structure of the solar wind-Venus interaction.