EGU21-12221
https://doi.org/10.5194/egusphere-egu21-12221
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Clinoform growth and sediment flux of Late Cenozoic Yinggehai and Qiongdongnan shelf margins, Northern South China Sea

Si Chen, Hua Wang, Jianghao Ma, Tianhao Gong, and Zhenghong Yu
Si Chen et al.
  • China University of Geosciences (Wuhan), Wuhan, China (sichen720@hotmail.com)

This study discusses the sedimentary flux, and sedimentary system source tracking on the shelf margins of Yinggehai (YGH) and Qiongdongnan (QDN) Basins, Northern South China Sea. The shelf margin clinoforms of YGH and QDN Basins, have grown since the Late Cenozoic (10.5 Ma), which generated more than 4 km-thick shelf prism above the T40 surface. By using the core, well drilling data, 2D and 3D seismic surveys, this study aims to: ① demonstrate the geometry morphology and architecture of the clinoforms, while the shelf margin trajectory (including the shelf-edge trajectory and toe of slope trajectory) showing down-flatting and rising patterns where the progradation and aggradation happened through the vertical evolution; ② estimate sediment supply values, load volumes, and their changes since the Late Cenozoic, predict ratio of the sediment flux across shelf-edge during their dynamic processes; ③ investigate the contradiction and correlation among the phenomena that sediments show distinctly increasing in flux, decreasing in grain size, and response delay of flux rate peak since 2-4 Ma. The preliminary results show that the vertical sediment accumulation rate increased significantly across the entire YGH and QDN Basin margin system after 2.4 Ma, with a marked increase in mud content that likely caused by long‐distance, alongshore currents with high content of mud during the Pleistocene. Furthermore, laterally, the estimated total sediment flux onto the margin shows a dramatic decline from west to east while moving away from the Red River depocenter, as well as a decrease in the percentage of total discharge crossing the shelf break in this same direction. The overall margin geometry shows a remarkable change from sigmoidal, strongly progradational and aggradational in the west to weakly progradational in the east of QDN Basin margin. The Late Cenozoic shelf margin growth, with its overall increased sediment flux, responded to global, high‐frequency transgressive‐regressive climate cycles during a falling global sea level and gradual cooling temperature in this icehouse period.

How to cite: Chen, S., Wang, H., Ma, J., Gong, T., and Yu, Z.: Clinoform growth and sediment flux of Late Cenozoic Yinggehai and Qiongdongnan shelf margins, Northern South China Sea, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-12221, https://doi.org/10.5194/egusphere-egu21-12221, 2021.

Corresponding displays formerly uploaded have been withdrawn.