Abrupt thaw enhances annual global warming potential of an actively degrading permafrost peatland

Inge Althuizen¹, Casper Christiansen¹,², Peter Dörsch³, Sigrid Kjær³, Anders Michelsen², David Risk⁴, Sebastian Westermann⁵, and Hanna Lee¹

¹NORCE Norwegian Research Centre, Bergen, Norway (ialt@norceresearch.no)
²University of Copenhagen, Center for Permafrost (CENPERM), Copenhagen, Denmark
³Norwegian University of Life Sciences, Ås, Norway
⁴Earth Sciences, St. Francis Xavier University, Antigonish, NS, Canada
⁵Department of Geosciences, University of Oslo, Oslo, Norway

Global scale warming has led to permafrost thaw, which may release large amounts of carbon to the atmosphere as CO₂ and CH₄, potentially accelerating global warming (i.e. a positive feedback). However, uncertainty in the mechanisms controlling carbon mineralization is compounded by concurrent changes in soil hydrology associated with permafrost thaw. Thawing permafrost can lead to surface water accumulation in some areas and seasonal or permanent soil drying in areas where permafrost thaw opens up new channels of water to penetrate into the groundwater system. The complexity of the hydrologic response to permafrost thaw increases the challenge in generating reliable estimates of the permafrost carbon climate feedback. Furthermore, limited observational data exist to i) quantify the effects of permafrost thaw on net tundra carbon budgets, particularly on an annual basis, and ii) as well as constrain the underlying processes governing carbon release under aerobic and anaerobic conditions.

Here, we investigated how changes in local hydrology affects CO₂ and CH₄ release from permafrost soils by establishing a field gradient study in northern Norway (69°N), where recent abrupt degradation of permafrost created thaw ponds in palsa-mire ecosystems. The site exhibits a natural gradient of permafrost thaw, which also corresponds to a strong hydrological gradient (i.e. dry palsas with intact permafrost, seasonally inundated thaw slumps, and thaw ponds). Since 2017, we have used a range of manual and automated techniques to measure changes in vegetation, soil and water microclimate, biogeochemistry, and soil CO₂ and CH₄ concentrations and efflux across the permafrost thaw gradient.

Our preliminary results show that abrupt permafrost thaw and landscape subsidence – both intermediate slumping and thaw pond formation – increase net annual carbon loss from this type of subarctic wetland. Permafrost thaw approximately doubles CO₂ emissions from thaw slumps compared to vegetated or soil palsas. Furthermore, CH₄ release greatly increased across the permafrost thaw gradient. While vegetated palsas were small sinks of atmospheric CH₄ during the growing season, permafrost thaw slumping and pond formation led to a dramatic increase in CH₄...
efflux compared to bare palsa. In contrast, bare soil palsa on were the most important source of N$_2$O. Soil profile CO$_2$ and CH$_4$ concentrations in thawed permafrost plots were overall highly enriched relative to palsa profiles, reflecting soil conditions with inundated pore space and low oxygen availability along the permafrost thaw gradient. We therefore conclude that abrupt thaw will increase annual carbon loss in subarctic palsa wetlands.