Analysis of 3D infiltration curves measured with disc infiltrometer in heterogeneous soil profiles: Sequential analysis of infiltration data and estimate of β

David Moret-Fernández1,2, Borja Latorre1, Laurent Lassabatere3, Simone Di Prima4, Mirko Castellini5, Deniz Yilmaz6, and Rafael Angulo-Jaramillo3

1Departamento de Suelo y Agua, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), PO Box 13034, 50080 Zaragoza, Spain
2Instituto Pirenaico de Ecología (CSIC), Av. Montañana 1005, P.O. Box 13.034, 50080 Zaragoza, Spain
3Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518, Vaulx-en-Velin, France
4Agricultural Department, University of Sassari, Viale Italia, 39, 07100 Sassari, Italy
5Council for Agricultural Research and Economics-Agriculture and Environment Research Center (CREA-AA), Via Celso Ulpiani 5, 70125 Bari, Italy
6Civil Engineering Department, Engineering Faculty, Munzur University, Tunceli, Turkey

The 3-D Haverkamp et al. (1994) model for disc infiltrometer measures on homogeneous media involves the following parameters: the soil sorptivity, S, the saturated hydraulic conductivity, K_s, the β parameter and the $A = (\gamma S^2)/(r_d*\Delta \theta)$ term, where r_d is the disc radius, $\Delta \theta$ is the soil water increase and γ is proportionality constant. Fixed β and A values are commonly used in most cases. S, and K_s can be estimated from the inverse analysis of a cumulative infiltration curve by fitting it the Haverkamp model. For practical reasons, Haverkamp implicit model is replaced by its 4-term ($4T$) approximate expansion for the transient state. The first part of this work analyzes the influence of layered soils on K_s and S estimates, and designs a new procedure, sequential Analysis of Infiltration curve (SAI), for treating infiltration curves impacted by soil layering. The SAI method analyzes a sequence of increasing dataset for a given infiltration curve and fits to the $4T$ expansions to estimate K_s, S. Then estimates and RMSE are reported as a function of the number of data points used for the fit. The method was applied on synthetic profiles with homogeneous loam soil, six layered profiles involving a 1, 2 and 3 cm thickness loam layer over silty or sandy loam soils, respectively. Erroneous estimates of K_s and S were obtained when the total infiltration curves were considered for the analysis, regardless of the presence of soil layering. In opposite, estimates were improved using the SAI method for the layered systems. The SAI method relies on the fact that the RMSE increases when the wetting front reaches the interface between the upper layer and the lower layer. Such increase allows (i) the detection of the soil heterogeneity, (ii) the determination of the optimum infiltration time, t_o, that corresponds to the minimum value of RMSE, and, (iii) accurate estimation the upper layer K_s and S.

Taking use of the SIA procedure, the second part of this communication studied the relationship between β and A, and proposed a new procedure to improve the estimate of K_s and S and
approach β. The analysis was applied on synthetic infiltration curves simulated on homogenous and layered columns. The results showed that different combinations of β and A resulted in similar K_s. Overall, optimization of K_s, S and A for different β values showed that β had an important effect on A and K_s, but not on S and RMSE. We propose approaching the optimum β as the β for which is closer to zero, where A and A_{\exp} are the optimized and measurable parameter, respectively. While the optimum β is calculated, K_s and S are computed by applying the optimum β to the respective quadratic $\beta(K_s)$ and $\beta(S)$ relationships. This methodology allowed improving the estimate of K_s giving good approaches of β (36% error) and omitting the erroneous praxis of using constant β and A values.