The impact of atmosphere-ocean-wave coupling on extreme surface wind forecasts

Emanuele Silvio Gentile1, Suzanne L. Gray1, Janet F. Barlow1, Huw W. Lewis2, and John M. Edwards2

1University of Reading, Department of Meteorology, Reading, U.K. (e.gentile@pgr.reading.ac.uk)
2Met Office, FitzRoy Road, Exeter EX1 3PB, U.K.

Accurate modelling of air-sea surface exchanges is crucial for reliable extreme surface wind forecasts. While atmosphere-only weather forecast models represent ocean and wave effects through sea-state independent parametrizations, coupled multi-model systems capture sea-state dynamics by integrating feedbacks between atmosphere, ocean and wave model components.

Here, we present the results of studying the sensitivity of extreme surface wind speeds to air-sea exchanges at kilometre scale using coupled and uncoupled configurations of the Met Office’s UK Regional Coupled Environmental Prediction (UKC4) system. The case period includes the passage of extra-tropical cyclones Helen, Ali, and Bronagh, which brought maximum gusts of 36 ms⁻¹ over the UK.

Compared to the atmosphere-only results, coupling to ocean decreases the domain-average sea surface temperature by up to 0.5 K. Inclusion of coupling to waves decreases the 98th percentile 10-m wind speed by up to 2 ms⁻¹ as young, growing wind waves decrease wind speed by increasing the sea aerodynamic roughness. Impacts on gusts are more modest, with local reductions of up to 1 ms⁻¹ due to enhanced boundary-layer turbulence which partially offsets air-sea momentum transfer.

Using a new drag parametrization based on the COARE-4.0 scheme, with a cap on the neutral drag coefficient and decrease for wind speeds exceeding 27 ms⁻¹, the atmosphere-only model achieves equivalent impacts on 10-m wind speeds and gusts as from coupling to waves. Overall, the new drag parametrization achieves the same 20% improvement in forecast 10-m wind skill as coupling to waves, with the advantage of saving the computational cost of the ocean and wave models.