Permafrost-derived dissolved organic matter character controls microbial community composition in Arctic coastal waters

Anders Dalhoff Bruhn¹, Colin A. Stedmon¹, Jérôme Comte², Atsushi Matsuoka³,⁴, Neik Jesse Speetjens⁵, George Tanski⁵,⁶, Jorien E. Vonk⁵, and Johanna Sjöstedt¹,⁷

¹Technical University of Denmark, DTU Aqua, Section for Oceans and Arctic, Kgs. Lyngby, Denmark (adbj@aqua.dtu.dk)
²Centre - Eau Terre Environnement, Institut National de la Recherche Scientifique, Québec, QC, Canada
³Takuvik Joint International Laboratory (CNRS-ULaval), 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada
⁴Institute for Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
⁵Department for Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
⁶Permafrost Research Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
⁷Department of Biology, Aquatic Ecology, Lund University

Climate warming is accelerating erosion rates along permafrost-dominated Arctic coasts. To study the impact of erosion on marine microbial community composition and growth in the Arctic coastal zone, dissolved organic matter (DOM) from three representative glacial landscapes (fluvial, lacustrine and moraine) along the Yukon coastal plain, are provided as substrate to marine bacteria using a chemostat setup. Our results indicate that chemostat cultures with a flushing rate of approximately a day provide comparable DOM bioavailability estimates to those from bottle experiments lasting weeks to months. DOM composition (inferred from UV-Visible spectroscopy) and biodegradability (inferred from DOC concentration, bacterial production and respiration) significantly differed between the three glacial deposit types. DOM from fluvial and moraine deposit types shows more terrestrial characteristics with lower aromaticity (S_R: 0.63 ±0.02, $SUVA_{254}$: 1.65 ±0.06 respectively S_R: 0.68 ±0.00, $SUVA_{254}$: 1.17 ±0.06) compared to the lacustrine deposit type (S_R: 0.71 ±0.02, $SUVA_{254}$: 2.15 ±0.05). The difference in composition of DOM corresponds with the development of three distinct microbial communities, with a dominance of Alphaproteobacteria for fluvial and lacustrine deposit types (relative abundance 0.67 and 0.87 respectively) and a dominance of Gammaproteobacteria for moraine deposit type (relative abundance 0.88). Bacterial growth efficiency (BGE) is 66% for moraine-derived DOM, while 13% and 28% for fluvial-derived and lacustrine-derived DOM respectively. The three microbial communities therefore differ in their net effect on DOM utilization. The higher BGE value for moraine-derived DOM was found to be due to a larger proportion of labile colourless DOM. The results from this study, therefore indicate a substrate control of marine microbial community composition and activities, suggesting that the effect of permafrost thaw and erosion in the Arctic coastal zone will depend on subtle differences in DOM related to glacial deposit types. These differences further determines the speed and extent of DOM mineralization and thereby carbon channelling into biomass in the microbial food web. We therefore conclude that marine microbes
strongly respond to the input of terrestrial DOM released during coastal erosion of Arctic glacial landscapes.