In-situ measurements of the HDO/H$_2$O Isotopic ratio in the Asian Summer Monsoon trace strong convective activity

Benjamin Clouser1, Clare Singer2, Sergey Khaykin3, Martina Krämer4, Alexey Lykov5, Sylvia Bucci6, Bernard Legras6, Stephan Borrmann7, Francesco Cairo8, Valentin Mitev9, Renaud Matthey10, Fabrizio Ravegnani8, Christian Rolf9, Alexey Ulanovsky11, Silvia Viciani12, Francesco D’Amato12, C Michael Volk13, Vladimir Yushkov11, Fred Stroh4, and Elisabeth Moyer1

1University of Chicago, Chicago, United States of America (bclouser@uchicago.edu)
2California Institute of Technology, Pasadena, CA, USA
3LATMOS/IPSL, UVSQ, Sorbonne Université, CNRS, Guyancourt, France
4Forschungszentrum Jülich, Institut für Energie und Klimaforschung (IEK-7), Germany
5Laboratoire de Météorologie Dynamique, ENS, CNRS, Paris, France
6Max Planck Institute for Chemistry, Mainz, Germany
7Institute for Atmospheric Sciences and Climate, ISAC-CNR, Rome, Italy
8Centre Suisse d’Electronique et de Microtechnique Neuchâtel, Switzerland
9LTF, University of Neuchâtel, Neuchâtel, Switzerland
10Central Aerological Observatory of RosHydroMet, Moscow, Russian Federation
11Central Aerological Observatory of RosHydroMet, Dolgoprudny, Russian Federation
12CNR-INO, Firenze, Italy
13Institute for Atmospheric and Environmental Research, University of Wuppertal, Wuppertal, Germany

In-situ measurements of the HDO/H$_2$O isotopic ratio from the Chicago Water Isotope Spectrometer (ChiWIS) during the 2017 StratoClim campaign help diagnose convective processes in the Asian Monsoon. Isotopic measurements show enormous diversity in isotopic composition, likely reflecting degree of recent convective influence. Eight flights in July—August sampled a wide range of convective influence at near-tropopause altitudes, with timescales of minutes to weeks, and mean isotopic compositions from -700 per mil in recent convective outflow to -350 per mil in more aged air that is at least several days from last convective influence. Above the tropopause, we use isotopic composition to understand the fate of convective remnants. Isotopic measurements suggest much in-situ cirrus measured during StratoClim campaign is actually secondary cirrus which has reformed in an area of prior convective moistening. These flights allow detailed comparison between North American and Asian monsoons, and we compare StratoClim results to both satellite and in-situ measurements in other monsoon and tropical locations. Finally, we discuss prospects for detection and interpretation of convective remnants during the 2021/2022 ACCLIP campaign.