Quanitification of sustainable hydropower potential in the Upper Indus basin

Sanita Dhaubanjar1,2, Arthur F. Lutz2, David Gernaat3, Santosh Nepal1, Saurav Pradhanang1, Sonu Khanal4, Arun Bhakta Shrestha1, and Walter Immerzeel2

1International Center for Integrated Mountain Development (ICIMOD), Lalitpur 44700, Nepal
2Faculty of Geosciences, Universiteit Utrecht, Utrecht 3584 CB, Netherlands
3PBL Netherlands Environmental Assessment Agency, The Hague 2500 GH, Netherlands
4FutureWater, Wageningen 6702 AA, Netherlands

Considering the lack of a comprehensive assessment of hydropower potential in the Upper Indus basin, we developed and implemented a systematic framework to explore four different classes of hydropower potential. Our framework uses high-resolution discharge generated by a coupled cryosphere-hydrology model as the bio-physical boundary conditions to estimate theoretical potential. Thereafter, diverse context-specific constraints are implemented stepwise to estimate the technical, economic and sustainable hydropower potential. The successive classes of hydropower potential integrate considerations for various water demands under the water-energy-food nexus, multiple geo-hazard risks, climate change, environmental protection, and socio-economic preferences. We demonstrate that the nearly two thousand Terawatt-hour of theoretical potential available annually in the upper Indus can be misleading because a majority of this is technically and economically not viable. Even smaller potential remains if we account for the various sustainability constraints that vary spatially. Our concept of the sustainable hydropower potential enables decision makers to look beyond the energy sector when selecting hydropower projects for development to achieve energy security under the Sustainable Development Goal 7 (SDG7). The generated portfolio of sustainable hydropower projects is superior to the current portfolio based on outdated studies because our method looks beyond theoretical possibilities and excludes projects that conflict with management objectives under other SDGs. The spatial maps with potential and the cost curves for hydropower production provide a science-based knowledge base for hydropower development in the Indus basin. Our method could similarly be adapted to inform hydropower development in other basins across the globe.