EGU21-14457
https://doi.org/10.5194/egusphere-egu21-14457
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

A multiproxy reconstruction of vegetation dynamics in the Eastern Alps (Switzerland): combining paleoecological and paleogenetic approaches.

Laura Dziomber1,2, Lisa Gurtner1,2, Maria Leunda1,2,3, and Christoph Schwörer1,2
Laura Dziomber et al.
  • 1Institute of Plant Sciences, University of Bern, Bern, Switzerland
  • 2Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
  • 3Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland

Current and future climate change is a serious threat to biodiversity and ecosystem stability. With a rapid increase of global temperatures by 1.5°C since the pre-industrial period and a projected warming of 1.5-4°C by the end of this century, plant species are forced to either adapt to these changes, shift their distribution range to higher elevation, or face population decline and extinction. Today, there is an urgent need to better understand the responses of mountain vegetation to climate change in order to predict the consequences of the human-driven global change currently occurring during the Anthropocene and maintain species diversity and ecosystem services. However, most predictions are based on short-term experiments. There is, in general, an insufficient use of longer time scales in conservation biology to understand long-term processes. Palaeoecological data are a great source of information to infer past species responses to changing environmental factors, such as climate or anthropogenic disturbances.

The last climate change of a similar magnitude and rate as projected for this century was the transition between the last Ice Age and the Holocene interglacial (ca. 11,700 years ago). By analyzing subfossil plant remains such as plant macrofossils, charcoal and pollen from natural archives, we can study past responses to climate change. However, until recently it was not possible to reconstruct changes at the population level. With the development of new methods to extract ancient DNA (aDNA) from plant remains and next generation DNA-sequencing techniques, we can now infer past population dynamics by analyzing the genetic variation through time. Ancient DNA might also be able to reveal if species could adapt to climatic changes by identifying intraspecific variation of specific genes related to climatic adaptations.

We are currently investigating a palaeoecological archive from a high-altitude mountain lake, Lai da Vons (1991 m a.s.l), situated in Eastern Switzerland. We are presenting preliminary macrofossil, pollen and charcoal results to reconstruct local to regional vegetation and fire dynamics with high chronological precision and resolution. In a next step, we will use novel molecular methods, in order to track adaptive and neutral genetic diversity through the Holocene by analyzing aDNA from subfossil conifer needles. The overarching goal of this large-scale, multiproxy study is to better understand past vegetation dynamics and the impact of future climate change on plants at multiple scales; from the genetic to the community level.

 

How to cite: Dziomber, L., Gurtner, L., Leunda, M., and Schwörer, C.: A multiproxy reconstruction of vegetation dynamics in the Eastern Alps (Switzerland): combining paleoecological and paleogenetic approaches., EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-14457, https://doi.org/10.5194/egusphere-egu21-14457, 2021.

Corresponding displays formerly uploaded have been withdrawn.