

EGU21-14974 https://doi.org/10.5194/egusphere-egu21-14974 EGU General Assembly 2021

© Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

Cross helicity of magnetic clouds observed by Parker Solar Probe

Simon Good¹, Emilia Kilpua¹, Matti Ala-Lahti¹, Adnane Osmane¹, Stuart Bale^{2,3}, and Lingling Zhao⁴

Magnetic clouds are large-scale transient structures in the solar wind with low plasma β , low-amplitude magnetic field fluctuations, and twisted field lines with both ends often connected to the Sun. We analyse the normalised cross helicity, σ_c , and residual energy, σ_r , in magnetic clouds observed by Parker Solar Probe (PSP). In the November 2018 cloud observed at 0.25 au, a low value of σ_c was present in the cloud core, indicating that wave power parallel and anti-parallel to the mean field was approximately balanced, while the cloud's outer layers displayed larger amplitude Alfvénic fluctuations with high σ_c values and $\sigma_r \sim 0$. These properties are compared and contrasted to those found in clouds observed by PSP at larger heliocentric distances. We suggest that low σ_c is likely a common feature of magnetic clouds given their typically closed field structure, in contrast to the generally higher σ_c found on the open field lines of the solar wind.

¹Department of Physics, University of Helsinki, Helsinki, Finland

²Department of Physics, University of California, Berkeley, CA, USA

³Space Sciences Laboratory, University of California, Berkeley, CA, USA

⁴Center for Space Plasma and Aeronomic Research, University of Alabama, Huntsville, AL, USA