EGU21-15028
https://doi.org/10.5194/egusphere-egu21-15028
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Quantum sensors for space-borne earth observation

Christian Schubert1,2, Waldemar Herr1,2, Holger Ahlers1,2, Naceur Gaaloul2, Wolfgang Ertmer1, and Ernst Rasel2
Christian Schubert et al.
  • 1Deutsches Zentrum für Luft- und Raumfahrt e. V. (DLR), Institut für Satellitengeodäsie und Inertialsensorik, Hannover, Germany
  • 2Gottfried Wilhelm Leibniz Universität Hannover, Institut für Quantenoptik, Hannover, Germany

Atom interferometry enables quantum sensors for absolute measurements of gravity (1) and gravity gradients (2). The combination with classical sensors can be exploited to suppress vibration noise in the interferometer, extend the dynamic range, or to remove the drift from the classical device (3). These features motivate novel sensor and mission concepts for space-borne earth observation e.g. with quantum gradiometers (4) or hybridised atom interferometers (5). We will discuss developments of atom optics and atom interferometry in microgravity in the context of future quantum sensors (6) and outline the perspectives for applications in space (4,5).

The presented work is supported by by the CRC 1227 DQmat within the projects B07 and B09, the CRC 1464 TerraQ within the projects A01, A02 and A03, by "Niedersächsisches Vorab" through "Förderung von Wissenschaft und Technik in Forschung und Lehre" for the initial funding of research in the new DLR-SI Institute, and through the "Quantum and Nano- Metrology (QUANOMET)" initiative within the project QT3.

(1) V. Ménoret et al., Scientific Reports 8, 12300, 2018; A. Trimeche et al., Phys. Rev. Appl. 7, 034016, 2017; C. Freier et al., J. of Phys.: Conf. Series 723, 012050, 2016; A. Louchet-Chauvet et al., New J. Phys. 13, 065026, 2011; A. Peters et al., Nature 400, 849, 1999.

(2) P. Asenbaum et al., Phys. Rev. Lett. 118, 183602, 2017; M. J. Snadden et al., Phys. Rev. Lett. 81, 971, 1998.

(3) L. Richardson et al., Comm. Phys. 3, 208, 2020; P. Cheiney et al., Phys. Rev. Applied 10, 034030, 2018; J. Lautier et al., Appl. Phys. Lett. 105, 144102, 2014.

(4) A. Trimeche et al., Class. Quantum Grav. 36, 215004, 2019; K. Douch et al., Adv. Space. Res. 61, 1301, 2018.

(5) T. Lévèque et al., arXiv:2011.03382; S. Chiow et al., Phys. Rev. A 92, 063613, 2015.

(6) M. Lachmann et al., arXiv:2101.00972; K. Frye et al., EPJ Quant. Technol. 8, 1, 2021; D. Becker et al., Nature 562, 391, 2018; J. Rudolph et al., New J. Phys. 17, 065001, 2015; H. Müntinga et al., Phys. Rev. Lett. 110, 093602 , 2013.

How to cite: Schubert, C., Herr, W., Ahlers, H., Gaaloul, N., Ertmer, W., and Rasel, E.: Quantum sensors for space-borne earth observation, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15028, https://doi.org/10.5194/egusphere-egu21-15028, 2021.

Corresponding displays formerly uploaded have been withdrawn.