Roles of photosynthetic, respiratory, stomatal and phenological acclimation in controlling carbon and water fluxes of mature Norway spruce in a changing climate

Shubhangi Lamba1, Remko A. Duursma2, Thomas B. Hasper1, Bjarni D. Sigurðsson3, Belinda E. Medlyn2, Lasse Tarvainen1, Marianne Hall4, Sune Linder5, Göran Wallin1, and Johan Uddling1
1Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Göteborg, Sweden
2Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
3Agricultural University of Iceland, Keldnaholt, IS-112 Reykjavik, Iceland
4Centre for Environmental and Climate Research, Lund University, Sölvegatan 37, SE-22362 Lund, Sweden
5Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, P.O. Box 49, SE-230 53, Alnarp, Sweden

Boreal regions are undergoing rapid climate change but our understanding of the long-term consequences for forest processes is hampered by limited knowledge of how trees acclimate to rising atmospheric CO₂ concentrations and temperature. This study used the detailed canopy flux model MAESTRA to simulate the effects of elevated CO₂ (eCO₂) and warming on net photosynthesis (A_n) and transpiration (E) of mature boreal Norway spruce, investigating how these effects are influenced by the observed acclimation of photosynthetic capacity, respiration, stomatal behavior, and phenology. Without any type of acclimation, eCO₂ increased shoot and crown A_n during the non-frost growing season by 23-44%, while warming only had a minor effect (±2%). Photosynthetic downregulation greatly decreased the positive effect under eCO₂. Under warming, both stomatal and phenological acclimation had substantial effects on A_n but in opposite directions. Transpiration at shoot and crown level was greatly decreased (23-50%) by eCO₂ and increased by warming (27-42%) in the absence of acclimation. However, both these effects were largely cancelled by stomatal acclimation. Effects of eCO₂ on A_n were generally smaller at entire crown compared to shoot level, as a result of photosynthetic stimulation being smaller in shaded canopy positions. In addition, upregulation of respiration in eCO₂ had a considerably larger negative effect on A_n at crown compared to shoot level. Overall, tree physiological acclimation generally acted to dampen non-acclimated responses. We conclude that photosynthetic and respiratory acclimation greatly reduce the positive effect of eCO₂ on tree CO₂ assimilation, while stomatal and phenological acclimation are crucial for annual water consumption under warming. These results highlight the critical need to account for acclimation in models.