Bridge monitoring and deformation time-series analysis by high-resolution Multi-Temporal SAR Interferometry (MT-InSAR)

Valerio Gagliardi¹, Luca Bianchini Ciampoli¹, Amir Alani², Fabio Tosti², and Andrea Benedetto¹

¹Roma Tre University, Department of Engineering, Rome, Italy (valerio.gagliardi@uniroma3.it)
²University of West London (UWL), School of Computing and Engineering, London, United Kingdom

Multi-temporal Interferometric Synthetic Aperture Radar (InSAR) is a space-borne monitoring technique capable of detecting cumulative surface displacements with millimeter accuracy in the Line of Sight (LOS) of the radar sensor [1-3]. Several developments in the processing methods and the increasing availability of SAR datasets from different satellite missions, have proven the viability of this technique in the near-real-time assessment of bridges and the health monitoring of transport infrastructures [2-4].

This research aims to demonstrate the potential of satellite-based remote sensing techniques as an innovative health-monitoring method for structural assessment of bridges and the prevention of damages by structural subsidence, using high-resolution SAR datasets integrated with complementary Ground-Based (GB) Non-Destructive Testing (NDT) techniques. To this purpose, high-resolution COSMO-SkyMed (CSK) products provided by the Italian Space Agency (ASI) were acquired and processed.

In particular, a multi-temporal InSAR analysis was developed to identify and monitor the structural displacements of the Rochester Bridge, located in Rochester, Kent, UK. To this extent, a clustering operation is realised to collect the identified Persistent Scatterers (PSs) over the structural elements of the bridge (i.e., bridge piers and arcs). Furthermore, several sub-clusters with a comparable deformation trend were identified and located over the bridge elements. This operation paves the way for an automation of the process through a Machine Learning (ML) clustering algorithms to assign each PS data-point to specific groups, based on the structural element type and the trend of seasonal deformation time-series.

The outcomes of this study demonstrate how multi-temporal InSAR remote sensing techniques can be synergistically applied to complement non-destructive ground-based analyses, paving the way for future integrated methodologies in the monitoring of infrastructure assets.

Acknowledgments: The authors want to acknowledge the Italian Space Agency (ASI) for providing the COSMO-SkyMed Products® (©ASI, 2017-2019), in the framework of the ASI-Open Call Project “MoTIB, ID 742” accepted by ASI. In addition, the authors would like to acknowledge the Rochester Bridge Trust for facilitating and supporting this research. This research is supported by the Italian Ministry of Education, University and Research under the National Project “EXTRA TN”, PRIN 2017,
References


